ZHANG Wei-song, LIU Yu-ting, WU Gang-ping. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation. New Carbon Mater., 2020, 35(2): 155-164. doi: 10.1016/S1872-5805(20)60481-4
Citation: ZHANG Wei-song, LIU Yu-ting, WU Gang-ping. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation. New Carbon Mater., 2020, 35(2): 155-164. doi: 10.1016/S1872-5805(20)60481-4

Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation

doi: 10.1016/S1872-5805(20)60481-4
Funds:  National Natural Science Foundation of China & China National Petroleum Corporation Joint Fund(U1362107); National Natural Science Foundation of China-Shanxi Coal-based Low Carbon Joint Fund (U1810116); Major science and technology projects of Shanxi Provence (20181101020).
  • Received Date: 2020-01-27
  • Accepted Date: 2020-04-28
  • Rev Recd Date: 2020-03-10
  • Publish Date: 2020-04-28
  • The surface modification of multiwall carbon nanotubes (MWCTNs) was achieved by electrochemical anodic oxidation in NaOH and H2SO4 electrolytes. Their defect structures, functional groups, morphology and dispersibility in aqueous solutions were characterized by SEM, TEM, XPS, FTIR, Raman spectroscopy, zeta potential analysis and a stability test of their suspensions. Results indicate that anodic oxidation with the NaOH electrolyte removes more amorphous carbon, introduces fewer defects and more oxygen-containing functional groups (mainly -OH), and produces shorter nanotubes, as a result of which the resulting nanotubes are more stable when dispersed in aqueous solutions compared with those oxidized by the H2SO4 electrolyte. MWCTNs are more easily oxidized in the NaOH electrolyte, and the numbers of oxygen-containing functional groups and hydroxyl groups increase continuously with the oxidation degree. In the H2SO4 electrolyte, however, the numbers of oxygen-containing functional groups and hydroxyl groups increase and level off with the oxidation degree.
  • loading
  • Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297:787-792.
    Islam M S, Deng Y, Tong L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability:Towards next generation aerospace composites and energy storage applications[J]. Carbon, 2016, 96:701-710.
    Wu G P, Wang Y Y, Li D H, et al. Direct electrochemical attachment of carbon nanotubes to carbon fiber surfaces[J]. Carbon, 2011, 49:2152-2155.
    Liu Y T, Wu G P, Lu C X. Grafting of carbon nanotubes onto carbon fiber surfaces by step-wise reduction of in-situ generated diazonium salts for enhancing carbon/epoxy interfaces[J]. Mater Lett, 2016, 134:75-79.
    Zhou Z W, Yan Q H, Liu C H, et al. An arm-like electrothermal actuator based on superaligned carbon nanotubes/polymer composites[J]. New Carbon Mater, 2017, 32:411-418.
    Paul S, Rajbongshi B, Bora B, et al. Organic photovoltaic cells using MWCNTs[J]. New Carbon Mater, 2017, 32:27-34.
    Yu J R, Grossiord N, Koning C E, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution[J]. Carbon, 2017, 45:618-623.
    Liu J, Rinzler A G, Dai H J, et al. Fullerene Pipes[J]. Science, 1998, 280:1253-1256.
    Ji J Y, Lively B, Zhong W H. Soy protein-assisted dispersion of carbon nanotubes in a polymer matrix[J]. Mater Express, 2012, 2:76-82.
    Avile's F, Cauich-Rodriguez J V, Moo-Tah L, et al. Evaluation of mild acid oxidation treatments for MWCNT functionalization[J]. Carbon, 2009, 47:2970-2975.
    Yan Y B, Miao J W, Yang Z H, et al. Carbon nanotube catalysts:recent advances in synthesis, characterization and applications[J]. Chem Soc Rev, 2015, 44:3295-3346.
    Osorio A G, Silveira I C L, Bueno V L, et al. H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media[J]. Appl Surf Sci, 2018, 255:2485-2489.
    Flavin K, Kopf I, Del Canto E, et al. Controlled carboxylic acid introduction:a route to highly purified oxidized single-walled carbon nanotubes[J]. J Mater Chem, 2011, 21:17881-17887.
    Datsyuk V, Kalyva M, Papagelis K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46:833-840.
    Ziegler K J, Gu Z N, Peng H Q, et al. Controlled oxidative cutting of single-walled carbon nanotubes[J]. J Am Chem Soc, 2005, 127:1541-1547.
    Stobinski L, Lesiak B, Kövér L, et al. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods[J]. J Alloy and Compd, 2010, 501:77-84.
    Chiang Y C, Lin W H, Chang Y C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation[J]. Appl Surf Sci, 2011, 257:2401-2410.
    Price G J, Nawaz M, Yasin T, et al. Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance[J]. Ultraso Sonochem, 2018, 40:123-130.
    Rafailov P M, Sasaki T, Dettlaff-Weglikowska U, et al. High levels of electrochemical doping of carbon nanotubes:evidence for a transition from double-layer charging to intercalation and functionalization[J]. J Phys Chem B, 2008, 112:5368-73.
    Pumera M, Sasaki T, Iwai H. Relationship between carbon nanotube structure and electrochemical behavior:heterogeneous electron transfer at electrochemically activated carbon nanotubes[J]. Chem Asian J, 2008, 3:2046-55.
    Rafailov P M, Milenov T I, Monev M, et al. Spectroscopic studies on electrochemically doped and functionalized single-walled carbon nanotubes[J]. J Optoelectron, 2009, 11:1339-42.
    Rafailov P M, Thomsen C, Monev M, et al. Electrochemical functionalization of SWNT bundles in acid and salt media as observed by Raman and X-ray photoelectron spectroscopy[J]. Phys Stat Sol(b), 2008, 245:1967-70.
    Sumanasekera G U, Allen J L, Fang S L, et al. Electrochemical oxidation of single wall carbon nanotubes bundles in sulfuric acid[J]. J Phys Chem B 1999, 103:4294-7.
    Hiura H, Ebbesen T W, Fujita J, et al. Role of sp3 defect structures in graphite and carbon nanotubes[J]. Nature, 1994, 367:148-151.
    Wang Y, Wu J, Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio[J]. Carbon, 2003, 41:2939-1948.
    Cho J, Boccaccini A R, Shaffer M S P. Ceramic matrix composites containing carbon nanotubes[J]. J Mater Sci, 2009, 44:1934-1951.
    Zhang J, Zou H L, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes[J]. J Phys Chem B, 2003, 107:3712-3718.
    Kim S W, Kim T, Kim Y S, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers[J]. Carbon, 2012, 50:3-33.
    Smith B, Wepansnick K, Schrote K E, et al. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes[J]. Environ Sci Technol, 2009, 43:819-825.
    Jiang L Q, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. J Colloid Interf Sci, 2003, 260:89-94.
    Li Y H, Wang S G, Luan Z K, et al. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes[J]. Carbon, 2003, 41:1057-1062.
    Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy[J]. J Raman Spectrosc, 2007, 38:728-736.
    Scheibe B, Borowiak-Palen E, Kalenczuk R J. Oxidation and reduction of multiwalled carbon nanotubes-preparation and characterization[J]. Mater Charact, 2010, 61:185-191.
    Ramanathan T, Fisher F T, Ruoff R S, et al. Amino-functionalized carbon nanotubes for binding to polymers and biological systems[J]; Chem Mater, 2005, 17:1290-1295.
    Guo C X, Wang Y W, Tong X L, et al. Oxidative modification of multi-wall carbon nanotubes for the electrochemical detection of dopamine[J]. New Carbon Mater, 2016, 31:485-491.
    Zhao D, Jiang Y, Ding Y, et al. Polymer/carbon nanotubes nanocomposites:relationship between interfacial adhesion and performance of nanocomposites[J]. J Mater Sci, 2018, 53:10160-10172.
    Okpalugo T I T, Papakonstantinou P, Murphy H, et al. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs[J]. Carbon, 2005, 43:153-161.
    Ago H, Kugler T, Cacialli F, et al. Work functions and surface Functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999, 103:8116-8121.
    Kundu S, Wang Y M, Xia W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotubes surfaces:a quantitative high-resolution XPS and TPD/TPR study[J]. J Phys Chem C, 2008, 112:16869-16878.
    Zhang J C, Tang Y J, Yi Y, et al. Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays[J]. New Carbon Mater, 2016, 2:213-223.
    Wepasnick K A, Smith B A, Schrote K E, et al. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments[J]. Carbon, 2011, 49:24-36.
    Moonoosawmy K R, Kruse P. Ambiguity in the characterization of chemically modified single-walled carbon nanotubes:a raman and ultraviolet-visible-near-infrared study[J]. J Phys Chem C, 2009, 113:5133-5140.
    Ren F, Kanaan S A, Khalkhal F, et al. Controlled cutting of single-walled carbon nanotubes and low temperature annealing[J]. Carbon, 2013, 63:61-70.
    Kozlowski C, Sherwood P M A. X-Ray photoelectron-spectroscopic studies of carbon-fibre surfaces part 5.-the effect of pH on surface oxidation[J]. J Chem Soc Faraday Trans I, 1985, 81:2745-2756.
    Mazov I, Kuznetsov V L, Simonova I A, et al. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology[J]. Appl Surf Sci, 2012, 258:6272-6280.
    Kitagawa T, Tanaka T, Takata Y, et al. Ionically dissociative hydrocarbons containingthe C60 skeleto[J]. Tetrahedron, 1997, 53:9965-9976.
    Rafailov P M, Thomsen C, Monev M, et al. Electrochemical functionalization of SWNT bundles in acid and salt media as observed by Raman and X-ray photoelectron spectroscopy[J]. Phys Status Solidi B, 2008, 245, 1967-1970.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(472) PDF Downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return