LIU Yong, LI Qian-qian, ZHANG Hui, YU Shi-ping, ZHANG Li, YANG Yong-zhen. Research progress on the use of micro/nano carbon materials for antibacterial dressings. New Carbon Mater., 2020, 35(4): 323-335. doi: 10.1016/S1872-5805(20)60492-9
Citation: LIU Yong, LI Qian-qian, ZHANG Hui, YU Shi-ping, ZHANG Li, YANG Yong-zhen. Research progress on the use of micro/nano carbon materials for antibacterial dressings. New Carbon Mater., 2020, 35(4): 323-335. doi: 10.1016/S1872-5805(20)60492-9

Research progress on the use of micro/nano carbon materials for antibacterial dressings

doi: 10.1016/S1872-5805(20)60492-9
Funds:  National Natural Science Foundation of China (U1710117), Shanxi Provincial Key Research and Development Program (201703D321015-4), Shanxi Provincial Excellent Talents Science and Technology Innovation Project (201805D211001),and Natural Science Foundation of Shanxi Province (201901D11388).
  • Received Date: 2020-03-29
  • Rev Recd Date: 2020-07-02
  • Publish Date: 2020-08-28
  • Micro/nano carbon materials, including activated carbon fibers, carbon nanotubes, graphene, carbon dots and carbon aerogels, have a low production cost, excellent biocompatibility and physicochemical and mechanical properties when used as antibacterial materials and carriers for giving wound dressings a strong bactericidal activity and improved wound healing ability. Here, highly innovative antibacterial agents and antibacterial dressings based on these micro/nano carbon materials, that provide new alternatives to treat infected wounds are reviewed. The current problems for their use in antibacterial dressings are discussed, possible solutions are proposed, and prospects are considered.
  • loading
  • Simões D, Miguel S P, Ribeiro M P, et al. Recent advances on antimicrobial wound dressing:A review[J]. Eur J Pharm Biopharm, 2018, 127:130-141.
    Vig K, Chaudhari A, Tripathi S, et al. Advances in skin regeneration using tissue engineering[J]. Int J Molecular Sci, 2017, 18(4):789.
    Zhou Y, Xu L. Recent progress of antimicrobial wound dressings[J]. Chinese Journal of Injury Repair and Wound Healing (Electronic Edition), 2012, 07(3):307-311.
    Chen C, Qi F. Advances in studies of wound dressings[J]. Chinese Journal of Aesthetic Medicine, 2018, 27(2):22-24.
    Luo Z, Zhang J. Advances in the research of antibacterial I composite dressings based on bacterial cellulose[J]. Chinese Journal of Burns, 2018, 34(5):314-317.
    Liu M H, Duan X P, Li Y M, et al. Electrospun nanofibers for wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2017, 76:1413-1423.
    Liu Y, Zhou S, Gao Y, et al. Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer[J]. Asian J Pharm Sci, 2019, 14(2):130-143.
    Hamedi H, Moradi S, Hudson S M, et al. Chitosan based hydrogels and their applications for drug delivery in wound dressings:A review[J]. Carbohydr Polym, 2018, 199:445-460.
    Yang K, Han Q, Chen B, et al. Antimicrobial hydrogels:promising materials for medical application[J]. Int J Nanomedicine, 2018, 13:2217-2263.
    Chang C, Chen Sheng-jie, Duan S, et al. Research status and application prospects of biomedical hydrogel dressings[J]. China Textile Leader, 2018, 894(05):47-51.
    Zhang H Q. The preparation and cytotoxicity of a hydrogel wound dressing with temperature-sensitive & antibacterial properties[D]. Nanchang University, 2018.
    Kamoun E A, Kenawy E S, Chen X. A review on polymeric hydrogel membranes for wound dressing applications:PVA-based hydrogel dressings[J]. J Adv Res, 2017, 8(3):217-233.
    Miguel S P, Sequeira R S, Moreira A F, et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process[J]. Eur J Pharm Biopharm, 2019, 139:1-22.
    Shams E, Yeganeh H, Naderi-Manesh H, et al. Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings:In vitro and in vivo evaluations[J]. J Mater Sci Mater Med, 2017, 28(5):75.
    Vowden K, Vowden P. Wound dressings:Principles and practice[J]. Surgery (Oxford), 2017, 35(9):489-494.
    Ghosal K, Agatemor C, Špitálsky Z, et al. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites[J]. Chem Eng J, 2019, 358:1262-1278.
    Macewan M R, Macewan S, Kovacs T R, et al. What makes the optimal wound healing material? A review of current science and introduction of a synthetic nanofabricated wound care scaffold[J]. Cureus, 2017, 9(10):1736.
    Wang Y. Nano crystalline silver activated carbon fiber dressing research in the treatment of pressure ulcers[D]. The Second Military Medical University, 2014.
    Chen S X, Liu J R, Zeng H M. Comparison of the actibacterial activity of several kinds of activated silver-supporting carbon fibers[J]. New Carbon Materials, 2002, 17(1):26-29.
    Mao Y, Liu D. Antibacterial properties, mechanism and applications of carbon nanotubes[J]. Journal of Functional Materials, 2018, 49(10):10039-10042.
    Shi L F, Liu J Z, Yang J H, et al. Langmuir-Blodgett assembly of transparent graphene oxide-silver microwire hybrid films with an antibacterial property[J]. New Carbon Materials, 2017, 32(4):344-351.
    Zhu Z, Huang Q. Research progress on antibacterial mechanisms of graphene and graphene-based nanomaterials[J]. Journal of Biology, 2018, 35(2):67-72.
    Peng Zheng, Wei Zhou, Yibing Wang, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Anand A, Unnikrishnan B, Wei S C, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents-a minireview[J]. Nanoscale Horizons, 2019, 4(1):117-137.
    Ruan Z, Zhao C, Liu B. Anticacterial activity of carbon quantum dots:Research progress[J]. Chinese Journal of Microecology, 2019, 31(02):229-238.
    Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon, 2004, 42(15):3209-3216.
    Li L G, Chai J K, Guo Z R, et al. Application of carbon fiber dressing on burn wounds[J]. Chinese Journal of Surgery, 2006, 44(15):1047-1049.
    Yang X, Liu J, Zhang H, et al. Clinical application of composite carbon fiber dressing[J]. Chinese Journal of Burns, 2002, 18(6):378-378.
    Huang W Y, Yeh C L, Lin J H, et al. Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing[J]. J Mater Sci:Mater M, 2012, 23(6):1465-1478.
    Murphy N. Reducing infection in chronic leg ulcers with an activated carbon cloth dressing[J]. Br J Nur, 2016, 25(12):S38-S44.
    Ashfaq M, Verma N, Khan S. Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi-and extensively drug-resistant strains[J]. Mater Sci Eng C Mater Biol Appl, 2017, 77:630-641.
    Hui Z, Zhang X, Yu J, et al. Carbon nanotube-hybridized supramolecular hydrogel based on PEO-b-PPO-b-PEO/α-cyclodextrin as a potential biomaterial[J]. J Appl Polym Sci, 2010, 116(4):1894-1901.
    Shi H, Liu H, Luan S, et al. Effect of polyethylene glycol on the antibacterial properties of polyurethane/carbon nanotube electrospun nanofibers[J]. RSC Adv, 2016, 6(23):19238-19244.
    Liu C, Shi H, Yang H, et al. Fabrication of antibacterial electrospun nanofibers with vancomycin-carbon nanotube via ultrasonication assistance[J]. Mater Design, 2017, 120:128-134.
    Yu S, Zhang Y, Chen L, et al. Antitumor effects of carbon nanotube-drug complex against human breast cancer cells[J]. Exp Ther Med, 2018, 16(2):1103-1110.
    Nowacki M, Wi'sniewski M, Werengowska-Cie'cwierz K, et al. New application of carbon nanotubes in haemostatic dressing filled with anticancer substance[J]. Biomed Pharmacother, 2015, 69:349-354.
    Yu S P, Su X D, Du J L, et al. The cytotoxicity of water-soluble carbon nanotubes on human embryonic kidney and liver cancer cells[J]. New Carbon Materials, 2018, 33(1):36-45.
    Liao J L, Zhong S, Wang S H, et al. Preparation and properties of a novel carbon nanotubes/poly(vinyl alcohol)/epidermal growth factor composite biological dressing[J]. Exp Ther Med, 2017, 14:2341-2348
    Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7):4317-4323.
    Zhou Y, Chen R, He T, et al. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing[J]. ACS Appl Mater Interfaces, 2016, 8(24):15067-15075.
    Fan Z, Liu B, Wang J, et al. A Novel Wound dressing based on Ag/graphene polymer hydrogel:Effectively kill bacteria and accelerate wound healing[J]. Adv Funct Mater, 2014, 24(25):3933-3943.
    Mitra T, Manna P J, Raja S T K, et al. Curcumin loaded nano graphene oxide reinforced fish scale collagen-a 3D scaffold biomaterial for wound healing applications[J]. RSC Adv, 2015, 5(119):98653-98665.
    Mahmoudi N, Eslahi N, Mehdipour A, et al. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes:Pre-clinical and pathological studies in animal models[J]. J Mater Sci Mater Med, 2017, 28(5):73.
    Misra S K, Ramteke P W, Patil S, et al. Tolnaftate-graphene composite-loaded nanoengineered electrospun scaffolds as efficient therapeutic dressing material for regimen of dermatomycosis[J]. Appl Nanosci, 2018, 8(7):1629-1640.
    Li C, Ye R, Bouckaert J, et al. Flexible nanoholey patches for antibiotic-free treatments of skin infections[J]. ACS Appl Mater Interfaces, 2017, 9(42):36665-36674.
    Sun H, Zhao A, Gao N, et al. Deciphering a nanocarbon-based artificial peroxidase:Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots[J]. Angewandte Chemie, 2015, 54(24):7176-7180.
    Sun H, Gao N, Dong K, et al. Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano, 2014, 8(6):6202-6210.
    Cui B, Feng X T, Zhang F, et al. The use of carbon quantum dots as fluorescent materials in white LEDs[J]. New Carbon Materials, 2017, 32(5):385-401.
    Hu C, Li M, Qiu J, et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chem Soc Rev, 2019, 48:2315-2337.
    Omidi M, Yadegari A, Tayebi L. Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel[J]. RSC Adv, 2017, 7(18):10638-10649.
    Zhang S, Wu D, Lin W, et al. Adsorption and antibacterial activity of silver-dispersed carbon aerogels[J]. J Appl Polym Sci, 2010, 102(2):1030-1037.
    Concha M, Vidal A, Giacaman A, et al. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization:Biological properties toward wound healing[J]. J Biomed Mater Res B, 2018, 106(6):2464-2471.
    Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon, 2004, 42(15):3209-3216.
    Zhen Y D, Yan N. Xie Y J, et al. A preparation method of antibacterial nanometer cellulose carbon aerogel with a novel high performance[P]. 2015. CN105053007A.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(573) PDF Downloads(410) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return