GUO Ming-xi, WU Jing-bin, LI Feng-hai, GUO Qian-qian, FAN Hong-li, ZHAO Hui-min. A low-cost lotus leaf-based carbon film for solar-driven steam generation. New Carbon Mater., 2020, 35(4): 436-443. doi: 10.1016/S1872-5805(20)60501-7
Citation: GUO Ming-xi, WU Jing-bin, LI Feng-hai, GUO Qian-qian, FAN Hong-li, ZHAO Hui-min. A low-cost lotus leaf-based carbon film for solar-driven steam generation. New Carbon Mater., 2020, 35(4): 436-443. doi: 10.1016/S1872-5805(20)60501-7

A low-cost lotus leaf-based carbon film for solar-driven steam generation

doi: 10.1016/S1872-5805(20)60501-7
Funds:  Natural Science Foundation of Shandong Province, China (ZR2017BB063, ZR2018MB037), Natural Science Foundation of China (21875059), Scientific Research Fund of Heze University, China (XY16BS28).
  • Received Date: 2020-03-20
  • Rev Recd Date: 2020-06-30
  • Publish Date: 2020-08-28
  • Solar-driven interfacial evaporation has attracted much attention owing to its potential for addressing the shortage of freshwater. Low-cost and high-efficiency photothermal conversion materials are the key to the application. A low-cost lotus leaf-based carbon film (LLC) for use as a photo-to-heat conversion medium for solar-driven steam generation was prepared by the simple vacuum filtration of LLC obtained at a carbonization temperature of 800℃ using a porous fibrous filter paper. In a laboratory-made solar steam generation real-time test system using commercial polystyrene foam as the insulation layer and the LLC film on porous fibrous filter paper as the water transport path, the LLC film exhibits a solar-driven water evaporation rate of 1.30 kg/m2 h and a solar-vapor conversion efficiency of 77.5%. The LLC film also shows excellent performance in seawater desalination and sewage purification. The work provides a possible route for the use of low-cost and environmentally friendly biomass-based carbon materials in solar-driven steam generation.
  • loading
  • Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310.
    Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advance, 2016, 2(2):e1500323.
    Elimelech M, Phillip W A. The future of seawater desalination:Energy, technology, and the environment[J]. Science, 2011, 333(6043):712.
    Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination:Water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9):2317-2348.
    Ibrahim A G M, Rashad A M, Dincer I. Exergoeconomic analysis for cost optimization of a solar distillation system[J]. Solar Energy, 2017, 151(15):22-32.
    Neumann O, Urban A S, Day J, et al. Solar vapor generation enabled by nanoparticles[J]. Acs Nano, 2013, 7(1):42-49.
    Bae K, Kang G, Cho S K, et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation[J]. Nature Communications, 2015, 6(1):10103.
    Peng Zheng, Wei Zhou, Yibing Wang, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Dao V D, Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices[J]. Global Challenges, 2018, 2(2):1700094.
    Deng Z, Zhou J, Miao L, et al. The emergence of solar thermal utilization:Solar-driven steam generation[J]. Journal of Materials Chemistry A, 2017, 5(17):7691-7709.
    Zhang P, Liao Q, Yao H, et al. Direct solar steam generation system for clean water production[J]. Energy Storage Materials, 2019, 18:429-446.
    Zhou L, Tan Y, Wang J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photon, 2016, 10(6):393-398.
    Zhou L, Tan Y, Ji D, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4):e1501227.
    Chen M, Wu Y, Song W, et al. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation[J]. Nanoscale, 2018, 10(13):6186-6193.
    Jiang Q, Gholami Derami H, Ghim D, et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2017, 5(35):18397-18402.
    Zhu G, Xu J, Zhao W, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(46):31716-31721.
    Ding D, Huang W, Song C, et al. Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation[J]. Chemical Communication, 2017, 53(50):6744-6747.
    Wu D, Qu D, Jiang W, et al. Self-floating nanostructured Ni-NiOx/Ni foam for solar thermal water evaporation[J]. Journal of Materials Chemistry A, 2019, 7(14):8485-8490.
    Ren P, Yang X. Synthesis and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation[J]. Solar Rrl, 2018, 2(4):1700233.
    Ni G, Miljkovic N, Ghasemi H, et al. Volumetric solar heating of nanofluids for direct vapor generation[J]. Nano Energy, 2015, 17:290-301.
    Zhang P, Li J, Lv L, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano, 2017, 11(5):5087-5093.
    Zhou X, Zhao F, Guo Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8):1985-1992.
    Wang H, Du A, Ji X, et al. Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation[J]. ACS Applied Materials & Interfaces, 2019, 11(45):42057-42065.
    Fang Q, Li T, Lin H, et al. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance[J]. ACS Applied Energy Materials, 2019, 2(6):4354-4361.
    Singh S, Shauloff N, Jelinek R. Solar-enabled water remediation via recyclable carbon-dot/hydrogel composites[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15):13186-13194.
    Xu N, Hu X, Xu W, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017, 29(28):1606762.
    Liu J, Liu Q, Ma D, et al. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(15):9034-9039.
    Xue G, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2017, 9(17):15052-15057.
    Li T, Liu H, Zhao X, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device:Localized heat, rapid water transport[J]. Advanced Functional Materials, 2018, 28(16):1707134.
    Fang J, Liu J, Gu J, et al. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J].Chemistry of Materials, 2018, 30(18):6217-6221.
    Cheng Y T, Rodak D E, Wong C A, et al. Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves[J]. Nanotechnology, 2006, 17(5):1359-1362.
    Boström T, Wäckelgård E, Westin G. Solution-chemical derived nickel-alumina coatings for thermal solar absorbers[J]. Solar Energy, 2003, 74(6):497-503.
    Wang X, Li H, Yu X, et al. High-performance solution-processed plasmonic Ni nanochain-Al2O3 selective solar thermal absorbers[J]. Applied Physics Letters, 2012, 101(20):203109.
    Organization W H. Safe drinking-water from desalination[J]. Environmental Science & Technology, 2011, 27:2295-2297.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(635) PDF Downloads(158) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return