Volume 35 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
LI Deng-hua, LU Chun-xiang, HAO Jun-jie, WANG Hui-min. A comparative analysis of polyacrylonitrile-based carbon fibers: (I) Microstructures. New Carbon Mater., 2020, 35(6): 793-801. doi: 10.1016/S1872-5805(20)60527-3
Citation: LI Deng-hua, LU Chun-xiang, HAO Jun-jie, WANG Hui-min. A comparative analysis of polyacrylonitrile-based carbon fibers: (I) Microstructures. New Carbon Mater., 2020, 35(6): 793-801. doi: 10.1016/S1872-5805(20)60527-3

A comparative analysis of polyacrylonitrile-based carbon fibers: (I) Microstructures

doi: 10.1016/S1872-5805(20)60527-3
Funds:  Key Research and Development (R&D) Projects of Shanxi Province (201903D121005); Project of Shanxi Transportation Holdings Group Co. Ltd. (18-JKKJ-22,19-JKKJ-53); Science and Technology Major Project of Shanxi Province (20181101019).
  • Received Date: 2020-03-26
  • Rev Recd Date: 2020-07-16
  • Publish Date: 2020-12-31
  • X-ray wide angle diffraction/small angle scattering, Raman spectroscopy and high resolution transmission electron microscopy were used to characterize the crystalline structure, pore structure, radial structural heterogeneity, degree of graphitization, internal residual stress, crystalline orientation and fractal phenomena of various grades (T and MJ) of polyacrylonitrile-based carbon fibers made by Toray Inc, Japan. Results showed that compared with the T series fibers, the MJ series fibers had a significantly lower internal residual stress, better structural orientation and a much higher degree of graphitization, but the dimensions of the microvoids and the radial inhomogeneity were increased, which revealed the significant influence of graphitization conditions in making MJ series fibers on the microstructures of carbon fibers.
  • loading
  • Ruland W. Carbon fibers[J]. Adv Mater, 1990, 2(11):528-536.
    Rennhofer H, Loidl D, Puchegger S, et al. Structural development of PAN-based carbon fibers studied by in situ X-ray scattering at high temperatures under load[J]. Carbon, 2010, 48(4):964-971.
    Diefendorf R J, Tokarsky E. High-performance carbon fibers[J]. Polymer Engineering & Science, 1975, 15(3):150-159.
    Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high tensile strength, PAN-base carbon fibres[J]. Fibre Sci Technol, 1984, 20(1):55-72.
    Johnson D J, Tyson C N. The fine structure of graphitized fibres[J]. J Phys D Appl Phys, 1969, 2(6):787.
    Li D H, Lu C X, Wu G P, et al. Heat-induced internal strain relaxation and its effect on the microstructure of polyacrylonitrile-based carbon fiber[J]. J Mater Sci Technol, 2014, 30(10):1051-1058.
    Li D, Lu C, Du S, et al. Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering[J]. Appl Phys A, 2016, 122(11):956.
    Li D H, Lu C X, Wu G P, et al. Structural heterogeneity and its influence on the tensile fracture of PAN-based carbon fibers[J]. RSC Adv, 2014, 4(105):60648-60651.
    Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability, 2007, 92(8):1421-1432.
    Zhang M, Ogale A A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J]. Carbon, 2014, 69(0):626-629.
    Li C, Xian G. Experimental and modeling study of the evolution of mechanical properties of PAN-based carbon fibers at elevated temperatures[J]. Materials, 2019, 12(5):724.
    Li W, Long D H, Miyawaki J, et al. Structural features of polyacrylonitrile-based carbon fibers[J]. J Mater Sci, 2012, 47(2):919-928.
    Liu F, Wang H, Xue L, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization[J]. J Mater Sci, 2008, 43(12):4316-4322.
    Li D H, Lu C X, Wu G P, et al. Structural evolution during the graphitization of polyacrylonitrile-based carbon fiber as revealed by small-angle X-ray scattering[J]. J Appl Cryst, 2014, 47(6):1809-1818.
    Guigon M, Oberlin A. Heat-treatment of high tensile strength PAN-based carbon fibres:Microtexture, structure and mechanical properties[J]. Fibre Sci Technol, 1986, 27(1):1-23.
    Dresselhaus M, Dresselhaus G, Pimenta M, et al. Raman scattering in carbon materials[J]. Analytical applications of Raman spectroscopy, 1999, 367-434.
    Mallet-Ladeira P, Puech P, Toulouse C, et al. A Raman study to obtain crystallite size of carbon materials:A better alternative to the Tuinstra-Koenig law[J]. Carbon, 2014, 80(1):629-639.
    Johnson J W, Marjoram J R, Rose P G. Stress graphitization of polyacrylonitrile based carbon fibre[J]. Nature, 1969, 221(5178):357-368.
    Ruland W. Small-angle scattering of two-phase Systems:Determination and Significance of Systematic Deviations from Porod's Law[J]. J Appl Cryst, 1971, 4(1):70-73.
    Cohaut N, Guet J M, Diduszko R, et al. SAXS investigations on the porosity of pitch based carbon fibres[J]. Carbon, 1996, 34(5):674-6.
    Ruland W. Apparent fractal dimensions obtained from small-angle scattering of carbon materials[J]. Carbon, 2001, 39(2):323-334.
    Schmidt P. Small-angle scattering studies of disordered, porous and fractal systems[J]. J Appl Cryst, 1991, 24(5):414-435.
    Bale H D, Schmidt P W. Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties[J]. Physical Review Letters, 1984, 53(6):596-609.
    Teixema J. Small-angle scattering by fractal systems[J]. Journal of Applied Crystallography, 1988, 21(6):781-785.
    Kaneko K, Sato M, Suzuki T, et al. Surface fractal dimension of microporous carbon fibres by nitrogen adsorption[J]. J Chem Soc Faraday T, 1991, 87(1):179-184.
    Johnson D J, Tomizuka I, Watanabe O. The fine structure of pitch-based carbon fibres[J]. Carbon, 1975, 13(6):529-534.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(694) PDF Downloads(350) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return