Volume 36 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
SUN Ting, GAO Feng-yu, TANG Xiao-long, YI Hong-hong, YU Qing-jun, ZHAO Shun-zheng, XIE Xi-zhou. The preparation and use of γ-graphdiyne, a superb new photoelectrocatalyst. New Carbon Mater., 2021, 36(2): 304-321. doi: 10.1016/S1872-5805(21)60021-5
Citation: SUN Ting, GAO Feng-yu, TANG Xiao-long, YI Hong-hong, YU Qing-jun, ZHAO Shun-zheng, XIE Xi-zhou. The preparation and use of γ-graphdiyne, a superb new photoelectrocatalyst. New Carbon Mater., 2021, 36(2): 304-321. doi: 10.1016/S1872-5805(21)60021-5

The preparation and use of γ-graphdiyne, a superb new photoelectrocatalyst

doi: 10.1016/S1872-5805(21)60021-5
Funds:  National Natural Science Foundation of China (51808037, 21806009); China Postdoctoral Fund (2018M631344, 2019T120049)
More Information
  • Author Bio:

    SUN Ting, Master Student. E-mail: sunting_5@126.com

  • Corresponding author: TANG Xiao-long, Professor. E-mail: txiaolong@126.com
  • Received Date: 2020-04-22
  • Rev Recd Date: 2020-11-08
  • Available Online: 2021-05-12
  • Publish Date: 2021-04-01
  • Photoelectrocatalysis is a sustainable process that plays a central role in clean energy production and pollution removal. Due to the constraints of current photoelectrocatalysts such as instability and scarcity, scientists have resorted to carbon nanomaterials that are more stable and abundant. It has been found that γ-graphdiyne (GDY), the most stable carbon phase among graphynes that contains a diacetylene bond, has some striking properties such as well-ordered pores, non-uniform electronic structure, easily tunable bandgap and excellent photoelectric performance. It has become a new “star” as a highly active photoelectrocatalyst. Its properties, synthesis strategies and photoelectrocatalytic applications are reviewed. Five reaction systems are summarized based on the phase state of the precursors and catalysts, which include liquid-solid, liquid-liquid, gas-liquid, gas-solid, and solid-gas systems. The roles GDY play in photoelectrocatalysis itself, or as a support for single atom catalytic species are discussed. Problems for current research work are discussed and future research trends are proposed.
  • loading
  • [1]
    Wang Q, Lei Y, Wang D, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy and Environmental Science,2019,12(6):1730-1750. doi: 10.1039/C8EE03781G
    [2]
    She Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials Design[J]. Science,2017,355(6321
    [3]
    Meng A, Zhang L, Cheng B, et al. Dual Cocatalysts in TiO2 photocatalysis[J]. Advanced Materials,2019,31(30):1-31.
    [4]
    Zhao S, Wang D W, Amal R, et al. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage[J]. Advanced Materials,2019,31(9):1-22.
    [5]
    Lai L, Potts J R, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy and Environmental Science,2012,5(7):7936-7942. doi: 10.1039/c2ee21802j
    [6]
    Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present and future[J]. Advanced Materials,2019,31(13):e1804799.
    [7]
    Zuo Z, Wang D, Zhang J, et al. Synthesis and applications of graphdiyne-based metal-free catalysts[J]. Advanced Materials,2019,31(13):e1803762.
    [8]
    Yu H, Xue Y, Li Y. Graphdiyne and its assembly architectures: synthesis, functionalization and applications[J]. Advanced Materials,2019,31(42):1-21.
    [9]
    Lu X, Han Y, Lu T. Structure characterization and application of graphdiyne in photocatalytic and electrocatalytic reactions[J]. Acta Physico - Chimica Sinica,2018,34(9):1014-1028. doi: 10.3866/PKU.WHXB201801171
    [10]
    Lu Z, Li S, Lv P, et al. First principles study on the interfacial properties of NM/Graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing[J]. Applied Surface Science,2016,360:1-7. doi: 10.1016/j.apsusc.2015.10.219
    [11]
    Du Y, Zhou W, Gao J, et al. Fundament and application of graphdiyne in electrochemical energy[J]. Accounts of Chemical Research,2020
    [12]
    Huang C S, Li Y L. Structure of 2D graphdiyne and its application in energy fields[J]. Acta Physico - Chimica Sinica,2016,32(6):1314-1329. doi: 10.3866/PKU.WHXB201605035
    [13]
    Haley M M, Brand S C, Pak J J, et al. Carbon networks based on dehydrobenzoannu- lenes: Synthesis of graphdiyne substructures[J]. Angewandte Chemie-International Edition,1997,36(8):836-838. doi: 10.1002/anie.199708361
    [14]
    Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications,2010,46(19):3256-3258. doi: 10.1039/b922733d
    [15]
    Xiao K, Li J, Wu X, et al. Nanoindentation of thin graphdiyne films: Experiments and molecular dynamics simulation[J]. Carbon,2019,144:72-80. doi: 10.1016/j.carbon.2018.12.029
    [16]
    Zhang H, He X, Zhao M, et al. Tunable hydrogen separation in sp-Sp2 hybridized carbon membranes: A first-principles prediction[J]. Journal of Physical Chemistry C,2012,116(31):16634-16638. doi: 10.1021/jp304908p
    [17]
    Yang Y, Xu X. Mechanical properties of graphyne and its family-a molecular dynamics investigation[J]. Computational Materials Science,2012,61:83-88. doi: 10.1016/j.commatsci.2012.03.052
    [18]
    Bai H, Zhu Y, Qiao W, et al. Structures, stabilities and electronic properties of graphdiyne nanoribbons[J]. RSC Advances,2011,1(5):768-775. doi: 10.1039/c1ra00481f
    [19]
    Pei Y. Mechanical properties of graphdiyne sheet[J]. Physica B: Condensed Matter,2012,407(22):4436-4439. doi: 10.1016/j.physb.2012.07.026
    [20]
    Ge C, Chen J, Tang S, et al. Review of the electronic, optical and magnetic properties of graphdiyne: From theories to experiments[J]. ACS Applied Materials and Interfaces,2019,11(3):2707-2716. doi: 10.1021/acsami.8b03413
    [21]
    Enyashin A N, Ivanovskii A L. Graphene allotropes[J]. Physica Status Solidi (B) Basic Research,2011,248(8):1879-1883. doi: 10.1002/pssb.201046583
    [22]
    Luo G, Qian X, Liu H, et al. Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment[J]. Physical Review B - Condensed Matter and Materials Physics,2011,84(7):1-5.
    [23]
    Jiao Y, Du A, Hankel M, et al. Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification[J]. Chemical Communications,2011,47(43):11843-11845. doi: 10.1039/c1cc15129k
    [24]
    Srinivasu K, Ghosh S K. Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications[J]. Journal of Physical Chemistry C,2012,116(9):5951-5956. doi: 10.1021/jp212181h
    [25]
    Narita N, Nagai S. Optimized geometries and electronic structures of graphyne and its family[J]. Physical Review B-Condensed Matter and Materials Physics,1998,58(16):11009-11014. doi: 10.1103/PhysRevB.58.11009
    [26]
    Bu H, Zhao M, Wang A, et al. First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons[J]. Carbon,2013,65:341-348. doi: 10.1016/j.carbon.2013.08.035
    [27]
    He J, Ma S Y, Zhou P, et al. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+U calculations[J]. Journal of Physical Chemistry C,2012,116(50):26313-26321. doi: 10.1021/jp307408u
    [28]
    Long M, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions[J]. ACS Nano,2011,5(4):2593-2600. doi: 10.1021/nn102472s
    [29]
    Zheng Q, Luo G, Liu Q, et al. Structural and electronic properties of bilayer and trilayer graphdiyne[J]. Nanoscale,2012,4(13):3990-3996. doi: 10.1039/c2nr12026g
    [30]
    Luo G, Zheng Q, Mei W N, et al. Structural, electronic and optical properties of bulk graphdiyne[J]. Journal of Physical Chemistry C,2013,117(25):13072-13079. doi: 10.1021/jp402218k
    [31]
    Zhou J, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. Journal of the American Chemical Society,2015,137(24):7596-7599. doi: 10.1021/jacs.5b04057
    [32]
    Zhou J, Xie Z, Liu R, et al. Synthesis of ultrathin graphdiyne film using a surface template[J]. ACS Applied Materials and Interfaces,2019,11(3):2632-2637. doi: 10.1021/acsami.8b02612
    [33]
    Malko D, Neiss C, Viñes F, et al. Competition for graphene: Graphynes with direction-dependent dirac cones[J]. Physical Review Letters,2012,108(8):1-4.
    [34]
    Li J, Gao X, Liu B, et al. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production[J]. Journal of the American Chemical Society,2016,138(12):3954-3957. doi: 10.1021/jacs.5b12758
    [35]
    Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: Possibilities and challenges[J]. Advanced Materials,2012,24(2):229-251. doi: 10.1002/adma.201102752
    [36]
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters,2006,97(18):1-4.
    [37]
    Haley M M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures[J]. Pure and Applied Chemistry,2008,80(3):519-532. doi: 10.1351/pac200880030519
    [38]
    Estrade-Szwarckopf H. XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak[J]. Carbon,2004,42(8–9):1713-1721.
    [39]
    Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53(3):1126-1130. doi: 10.1063/1.1674108
    [40]
    Li C, Lu X, Han Y, et al. Direct imaging and determination of the crystal structure of six-layered graphdiyne[J]. Nano Research,2018,11(3):1714-1721. doi: 10.1007/s12274-017-1789-7
    [41]
    Gao X, Zhou J, Du R, et al. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for Oil/Water separation[J]. Advanced Materials,2016,28(1):168-173. doi: 10.1002/adma.201504407
    [42]
    Wang S S, Liu H B, Kan X N, et al. Superlyophilicity-facilitated synthesis reaction at the microscale: Ordered graphdiyne stripe arrays[J]. Small,2017,13(4):1-7.
    [43]
    Zhang S, Liu H, Huang C, et al. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chemical Communications,2015,51(10):1834-1837. doi: 10.1039/C4CC08706B
    [44]
    Colson J W, Woll A R, Mukherjee A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene John[J]. Science,2011,332(6026):228-231. doi: 10.1126/science.1202747
    [45]
    Kim K, Santos E J G, Lee T H, et al. Epitaxially grown strained pentacene thin film on graphene membrane[J]. Small,2015,11(17):2037-2043. doi: 10.1002/smll.201403006
    [46]
    Xu L, Zhou X, Tian W Q, et al. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil[J]. Angewandte Chemie - International Edition,2014,53(36):9564-9568. doi: 10.1002/anie.201400273
    [47]
    Gao X, Zhu Y, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der waals epitaxy[J]. Science Advances,2018,4(7):1-8.
    [48]
    Li J, Zhong L, Tong L, et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction[J]. Advanced Functional Materials,2019,29(43
    [49]
    Gao X, Li J, Du R, et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell[J]. Advanced Materials,2017,29(9
    [50]
    Zhao F, Wang N, Zhang M, et al. In situ growth of graphdiyne on arbitrary substrates with a controlled-release method[J]. Chemical Communications,2018,54(47):6004-6007. doi: 10.1039/C8CC03006E
    [51]
    Piradashvili K, Alexandrino E M, Wurm F R, et al. Reactions and polymerizations at the liquid-liquid interface[J]. Chemical Reviews,2016:2141-2169.
    [52]
    Matsumoto M, Valentino L, Stiehl G M, et al. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films[J]. Chem,2018,4(2):308-317. doi: 10.1016/j.chempr.2017.12.011
    [53]
    Tsukamoto T, Takada K, Sakamoto R, et al. Coordination nanosheets based on terpyridine-zinc(II) complexes: As photoactive host materials[J]. Journal of the American Chemical Society,2017,139(15):5359-5366. doi: 10.1021/jacs.6b12810
    [54]
    Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/Liquid or liquid/Liquid interface[J]. Journal of the American Chemical Society,2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776
    [55]
    Sakamoto R, Fukui N, Maeda H, et al. The accelerating world of graphdiynes[J]. Advanced Materials,2019,31(42
    [56]
    Perepichka D F, Rosei F. Extending polymer conjugation into the second dimension[J]. Science,2009,323(5911):216-217. doi: 10.1126/science.1165429
    [57]
    Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature,2010,466(7305):470-473. doi: 10.1038/nature09211
    [58]
    Grill L, Dyer M, Lafferentz L, et al. Nano-architectures by covalent assembly of molecular building blocks[J]. Nature Nanotechnology,2007,2(11):687-691. doi: 10.1038/nnano.2007.346
    [59]
    Eichhorn J, Heckl W M, Lackinger M. On-surface polymerization of 1, 4-Diethynylbenzene on Cu(111)[J]. Chemical Communications,2013,49(28):2900-2902. doi: 10.1039/c3cc40444g
    [60]
    Cirera B, Zhang Y Q, Björk J, et al. Synthesis of extended graphdiyne wires by vicinal surface templating[J]. Nano Letters,2014,14(4):1891-1897. doi: 10.1021/nl4046747
    [61]
    Gao H Y, Held P A, Amirjalayer S, et al. Intermolecular on-surface σ-bond metathesis[J]. Journal of the American Chemical Society,2017,139(20):7012-7019. doi: 10.1021/jacs.7b02430
    [62]
    Sun Q, Cai L, Ma H, et al. Dehalogenative homocoupling of terminal alkynyl bromides on Au(111): Incorporation of acetylenic scaffolding into surface nanostructures[J]. ACS Nano,2016,10(7):7023-7030. doi: 10.1021/acsnano.6b03048
    [63]
    Zhang Y Q, Kepčija N, Kleinschrodt M, et al. Homo-coupling of terminal alkynes on a noble metal surface[J]. Nature Communications,2012,3:1-8.
    [64]
    Liu R, Gao X, Zhou J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Advanced Materials,2017,29(18
    [65]
    Klappenberger F, Zhang Y Q, Björk J, et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes[J]. Accounts of Chemical Research,2015,48(7):2140-2150. doi: 10.1021/acs.accounts.5b00174
    [66]
    Zuo Z, Shang H, Chen Y, et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode[J]. Chemical Communications,2017,53(57):8074-8077. doi: 10.1039/C7CC03200E
    [67]
    Wang S, Yi L, Halpert J E, et al. A novel and highly efficient photocatalyst based on P 25- graphdiyne nanocomposite[J]. Small,2012,8(2):265-271. doi: 10.1002/smll.201101686
    [68]
    Yang N, Liu Y, Wen H, et al. Photocatalytic properties of graphdiyne and graphene modified TiO2: From Theory to Experiment[J]. ACS Nano,2013,7(2):1504-1512. doi: 10.1021/nn305288z
    [69]
    Liu Y. First-principles study on new photocatalytic materials graphdiyne-TiO2[J]. Acta Chimica Sinica,2013,71(2):260-264. doi: 10.6023/A12090705
    [70]
    Thangavel S, Krishnamoorthy K, Krishnaswamy V, et al. Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material[J]. Journal of Physical Chemistry C,2015,119(38):22057-22065. doi: 10.1021/acs.jpcc.5b06138
    [71]
    Dong Y, Zhao Y, Chen Y, et al. Graphdiyne-hybridized N-Doped TiO2 nanosheets for enhanced visible light photocatalytic activity[J]. Journal of Materials Science,2018,53(12):8921-8932. doi: 10.1007/s10853-018-2210-y
    [72]
    Zhang X, Zhu M, Chen P, et al. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent[J]. Physical Chemistry Chemical Physics,2015,17(2):1217-1225. doi: 10.1039/C4CP04683H
    [73]
    Han Y Y, Lu X L, Tang S F, et al. Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride[J]. Advanced Energy Materials,2018,8(16):1-8.
    [74]
    Zuo Z, Li Y. Emerging electrochemical energy applications of graphdiyne[J]. Joule,2019,3(4):899-903. doi: 10.1016/j.joule.2019.01.016
    [75]
    Das B K, Sen D, Chattopadhyay K K. Implications of boron doping on electrocatalytic activities of graphyne and graphdiyne families: A first principles study[J]. Physical Chemistry Chemical Physics,2016,18(4):2949-2958. doi: 10.1039/C5CP05768J
    [76]
    Chen X. Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: The effect of doping elements on the catalytic mechanisms[J]. Physical Chemistry Chemical Physics,2015,17(43):29340-29343. doi: 10.1039/C5CP05350A
    [77]
    Chen X, Qiao Q, An L, et al. Why do boron and nitrogen doped α- and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study[J]. Journal of Physical Chemistry C,2015:11493-11498.
    [78]
    Liu R, Liu H, Li Y, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale,2014,6(19):11336-11343. doi: 10.1039/C4NR03185G
    [79]
    Gu J, Magagula S, Zhao J, et al. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping[J]. Small Methods,2019,3(9):1-8.
    [80]
    Feng Z, Ma Y, Li Y, et al. Oxygen molecule dissociation on heteroatom doped graphdiyne[J]. Applied Surface Science,2019,494(June):421-429.
    [81]
    Lv Q, Si W, Yang Z, et al. Nitrogen-doped porous graphdiyne: a highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS Applied Materials and Interfaces,2017,9(35):29744-29752. doi: 10.1021/acsami.7b08115
    [82]
    Zhao Y, Wan J, Yao H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nature Chemistry,2018,10(9):924-931. doi: 10.1038/s41557-018-0100-1
    [83]
    Gao Y, Cai Z, Wu X, et al. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations[J]. ACS Catalysis,2018,8(11):10364-10374. doi: 10.1021/acscatal.8b02360
    [84]
    Xue Y, Guo Y, Yi Y, et al. Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode[J]. Nano Energy,2016,30:858-866. doi: 10.1016/j.nanoen.2016.09.005
    [85]
    Xue Y, Li J, Xue Z, et al. Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of PH[J]. ACS Applied Materials and Interfaces,2016,8(45):31083-31091. doi: 10.1021/acsami.6b12655
    [86]
    Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature Communications,2018,9(1
    [87]
    Yu H, Xue Y, Huang B, et al. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production[J]. iScience,2019,11:31-41. doi: 10.1016/j.isci.2018.12.006
    [88]
    Li J, Gao X, Jiang X, et al. Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution[J]. ACS Catalysis,2017,7(8):5209-5213. doi: 10.1021/acscatal.7b01781
    [89]
    Li J, Gao X, Li Z, et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity[J]. Advanced Functional Materials,2019,29(16):1-8.
    [90]
    Xue Y, Zuo Z, Li Y, et al. Graphdiyne-supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material[J]. Small,2017,13(31):1-10.
    [91]
    Hui L, Jia D, Yu H, et al. Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting[J]. ACS Applied Materials and Interfaces,2019,11(3):2618-2625. doi: 10.1021/acsami.8b01887
    [92]
    Xu G, Wang R, Ding Y, et al. First-principles study on the single ir atom embedded graphdiyne: An efficient catalyst for CO oxidation[J]. Journal of Physical Chemistry C,2018,122(41):23481-23492. doi: 10.1021/acs.jpcc.8b06739
    [93]
    Zhai X, Yan H, Ge G, et al. The single-Mo-atom-embedded-graphdiyne monolayer with ultra-low onset potential as high efficient electrocatalyst for N2 reduction reaction[J]. Applied Surface Science,2020,506(November 2019
    [94]
    Li Y, Fang Y, Xue Y, et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis[J]. Angewandte Chemie International Edition,2020
    [95]
    Kan X, Wang D, Pan Q, et al. Confined interfacial synthesis of highly crystalline and ultrathin graphdiyne films and their applications for N2 fixation[J]. Chemistry - A European Journal,2020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article Metrics

    Article Views(1438) PDF Downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return