Volume 36 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
JIN Heng-chao, SUN Qian, WANG Ji-tong, MA Chen, LING Li-cheng, QIAO Wen-ming. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure. New Carbon Mater., 2021, 36(2): 390-400. doi: 10.1016/S1872-5805(21)60023-15
Citation: JIN Heng-chao, SUN Qian, WANG Ji-tong, MA Chen, LING Li-cheng, QIAO Wen-ming. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure. New Carbon Mater., 2021, 36(2): 390-400. doi: 10.1016/S1872-5805(21)60023-15

Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure

doi: 10.1016/S1872-5805(21)60023-15
Funds:  National Science Foundation of China (U1710252, 21978097), and China Petrochemical Company Limited Fund (218025)
More Information
  • Author Bio:

    JIN Heng-chao, Master student. E-mail: jinking_hc@163.com

  • Corresponding author: QIAO Wen-ming, Professor. E-mail: qiaowm@ecust.edu.cn
  • Received Date: 2019-12-11
  • Rev Recd Date: 2020-03-30
  • Publish Date: 2021-04-01
  • Multi-component porous Si-SiOx (pSi) consisting of Si, SiO and SiO2 was formed by the pretreatment of SiO at 950 °C for 3 h in an inert atmosphere (He) using a disproportionation reaction. Hybrids of pSi and carbon nanofibers (pSi-CNFs) with a core-shell structure were prepared by catalytic chemical vapor deposition (CVD) using Fe-Ni species as the catalyst and a mixture of CO/H2/C2H4 (volumetric ratio 3∶1∶1) as the reactant for 0.5, 1 and 2 h, and were characterized by SEM, TEM, EDS, XRD, Raman spectroscopy and XPS. Results indicate that the pSi-CNF particle sizes are 5−20 μ m with the diameters of the CNFs being 5−40 nm. The CNFs are uniformly coated on the surface of the pSi to form a core-shell structure. Electrochemical performance testing shows that the reversible capacity of the pSi-CNF (0.5 h) remains at 1 411 mAh.g−1 and the capacity retention is 74% after 100 cycles at a current density of 0.2 A.g−1. The reversible capacity remains at 735 mAh.g−1 at a current density of 1 A g−1 after 300 cycles with a capacity retention of 86%. In the pSi, Si and SiO provide the electrochemical reversible capacity. The core-shell structure with the CNF coating effectively improves the conductivity of the composites, and also inhibits the volume expansion of silicon to maintain the integrity of the core shell structure.
  • loading
  • [1]
    Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry,2018,27(4):1067-1090. doi: 10.1016/j.jechem.2017.12.012
    [2]
    Li C, Zhang H P, Fu L J, et al. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochimica Acta,2006,51(19):3872-3883. doi: 10.1016/j.electacta.2005.11.015
    [3]
    Sun X L, Qin X J, Bu L M, et al. Research progress on carbon anode materials for lithium ion batteries[J]. Nonferrous Metals,2011,63(2):147-151.
    [4]
    Aurbach D, Zinigrad E, Cohen Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics,2002,148(3-4):405-416. doi: 10.1016/S0167-2738(02)00080-2
    [5]
    Li Y M, Xu S Y, Wu X Y, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(1):71-77. doi: 10.1039/C4TA05451B
    [6]
    Ren X X, Xu S D, Liu S B, et al. Lath-shaped biomass derived hard carbon as anode materials with super rate capability for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry,2019,841:63-72. doi: 10.1016/j.jelechem.2019.04.033
    [7]
    Casimir A, Zhang H G, Ogoke O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation[J]. Nano Energy,2016,27:359-376. doi: 10.1016/j.nanoen.2016.07.023
    [8]
    Kim H, Lee E J, Sun Y K. Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries[J]. Materials Today,2014,17(6):285-297. doi: 10.1016/j.mattod.2014.05.003
    [9]
    Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology,2014,9(3):187-192. doi: 10.1038/nnano.2014.6
    [10]
    Park H, Choi S, Lee S J, et al. Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability[J]. Nano Energy,2016,26:192-199. doi: 10.1016/j.nanoen.2016.05.030
    [11]
    Ji L, Zhou W, Chabot V, et al. Reduced graphene oxide/tin-antimony nanocomposites as anode materials for advanced sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(44):24895-24901.
    [12]
    Zhang J J, Yu A S. Nanostructured transition metal oxides as anode materials for lithium-ion batteries[J]. Science Bulletin,2015,60(9):823-838. doi: 10.1007/s11434-015-0771-6
    [13]
    Liu Z H, Yu Q, Zhao Y L, et al. Silicon oxides: A promising family of anode materials for lithium-ion batteries[J]. Chemical Society Reviews,2019,48(1):285-309. doi: 10.1039/C8CS00441B
    [14]
    Qiu D F, Ma X, Zhang J D, et al. Mesoporous silicon microspheres produced from in situ magnesiothermic reduction of silicon oxide for high-performance anode material in sodium-ion batteries[J]. Nanoscale Research Letters,2018,13:275. doi: 10.1186/s11671-018-2699-7
    [15]
    LIN J L, SU S M, HE Y M, et al. Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes[J]. New Carbon Materials,2020,35(1):66-72. doi: 10.1016/S1872-5805(20)60476-0
    [16]
    Al-Salch M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2-22. doi: 10.1016/j.carbon.2008.09.039
    [17]
    Jang S M, Miyawaki J, Tsuji M, et al. The preparation of a novel Si-CNF composite as an effective anodic material for lithium-ion batteries[J]. Carbon,2009,47(15):3383-3391. doi: 10.1016/j.carbon.2009.07.018
    [18]
    Zhu X Y. Synthesis of silicon-carbon composite anode materials for lithium ion batteries by chemical vapor deposition[D]. Qingdao University, 2013.
    [19]
    Liu H P, Qiao W M, Zhan L, et al. In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage[J]. New Carbon Materials,2009,24(2):124-130. doi: 10.1016/S1872-5805(08)60042-6
    [20]
    Yamamura H, Nobuhara K, Nakanishi S, et al. Investigation of the irreversible reaction mechanism and the reactive trigger on SiO anode material for lithium-ion battery[J]. Journal of the Ceramic Society of Japan,2011,119(1395):855-860. doi: 10.2109/jcersj2.119.855
    [21]
    Park C M, Choi W, Hwa Y, et al. Characterization and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry,2010,20(23):4854-4860. doi: 10.1039/b923926j
    [22]
    Tan T, Lee P K, Yu D Y W, et al. Probing the reversibility of silicon monoxide electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society,2019,166(3):A5210-A5214. doi: 10.1149/2.0321903jes
    [23]
    Nagao Y, Sakaguchi H, Honda H, et al. Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering[J]. Journal of the Electrochemical Society,2004,151(10):A1572-A1575. doi: 10.1149/1.1787173
    [24]
    Shi Z Q, Guo C Y, Yi W, et al. Catalytic graphitization of MCMB as anode material for lithium ion batteries[J]. Power Source Technology,2009,33(12):1061-1063.
    [25]
    Li C L, Tang F J, Cui X L, et al. Research progress on the composition and modification of SEI films in lithium ion batteries[J]. Power Source Technology,2016,40(10):2079-2081.
    [26]
    Yamasaki S, Nishino T, Asada A. Nonaqueous secondary battery with lithium titanium cathode [P]. U.S. Patent 6759168, 2004.
    [27]
    Jo Y N, Kim Y, Kim J S, et al. Si-graphite composites as anode materials for lithium secondary batteries[J]. Journal of Power Sources,2010,195(18):6031-6036. doi: 10.1016/j.jpowsour.2010.03.008
    [28]
    Si Q, Hanai K, Imanishi N, et al. Highly reversible carbon-nano-silicon composite anodes for lithium rechargeable batteries[J]. Journal of Power Sources,2009,189(1):761-765. doi: 10.1016/j.jpowsour.2008.08.007
    [29]
    Liu Y, Wen Z Y, Wang X Y, et al. Electrochemical behaviors of Si/C composite synthesized from F-containing precursors[J]. Journal of Power Sources,2009,189(1):733-737. doi: 10.1016/j.jpowsour.2008.08.016
    [30]
    Chou S L, Wang J Z, Choucair M, et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite[J]. Electrochemistry Communications,2010,12(2):303-306. doi: 10.1016/j.elecom.2009.12.024
    [31]
    Abel P R, Chockla A M, Lin Y M, et al. Nanostructured Si1-xGex for tunable thin film lithium-ion battery anodes[J]. ACS Nano,2013,7(3):2249-2257. doi: 10.1021/nn3053632
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(1255) PDF Downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return