Volume 36 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
HU Zeng-rong, DAI Rui, WANG Di-ni, WANG Xiao-nan, CHEN Feng, FAN Xue-liang, CHEN Chang-jun, LIAO Yi-liang, NIAN Qiong. Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering. New Carbon Mater., 2021, 36(2): 420-428. doi: 10.1016/S1872-5805(21)60023-16
Citation: HU Zeng-rong, DAI Rui, WANG Di-ni, WANG Xiao-nan, CHEN Feng, FAN Xue-liang, CHEN Chang-jun, LIAO Yi-liang, NIAN Qiong. Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering. New Carbon Mater., 2021, 36(2): 420-428. doi: 10.1016/S1872-5805(21)60023-16

Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering

doi: 10.1016/S1872-5805(21)60023-16
Funds:  Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0285), Arizona State University Startup Funding and National Science Foundation
More Information
  • Graphene has been considered as an ideal reinforcement filler for metal matrix composites because of its ultra-high strength and stiffness, and exceptional thermal and electrical properties. Graphene-reinforced copper (Gr/Cu) nanocomposites were fabricated by ball milling followed by pressureless vacuum sintering, and were characterized by SEM, TEM, XRD, Raman spectroscopy and mechanical tests. Results indicate that the graphene platelets are well dispersed in the nanocomposites without apparent damage. The graphene filler dramatically improves the hardness and reduces the coefficient of friction of the Gr/Cu nanocomposites compared to pure Cu.
  • loading
  • [1]
    Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites - a review[J]. International Materials Reviews,2010,55(1):41-64. doi: 10.1179/095066009X12572530170543
    [2]
    Neubauer E, Kitzmantel M, Hulman M, et al. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes[J]. Composites Science and Technology,2010,70(16):2228-2236. doi: 10.1016/j.compscitech.2010.09.003
    [3]
    Sun L, Fugetsu B. Mass production of graphene oxide from expanded graphite[J]. Materials Letters,2013,109(1):207-210.
    [4]
    Hu Z, Tong G, Lin D, et al. Graphene-reinforced metal matrix nanocomposites - a review[J]. Materials Science and Technology,2016:1-24.
    [5]
    Bartolucci S F, Paras J, Rafiee M A, et al. Graphene-aluminum nanocomposites[J]. Materials Science and Engineering: A,2011,528(27):7933-7937. doi: 10.1016/j.msea.2011.07.043
    [6]
    Li J F, Zhang L, Xiao J K, et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite[J]. Transactions of Nonferrous Metals Society of China,2015,25(10):3354-3362. doi: 10.1016/S1003-6326(15)63970-X
    [7]
    Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying[J]. Journal of Alloys and Compounds,2014,615(Supplement 1):S578-S82.
    [8]
    Kim WJ, Lee TJ, Han SH. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties[J]. Carbon,2014,69:55-65. doi: 10.1016/j.carbon.2013.11.058
    [9]
    Chu K, Jia C. Enhanced strength in bulk graphene-copper composites[J]. Physica Status Solidi (a),2014,211(1):184-90. doi: 10.1002/pssa.201330051
    [10]
    Xu Z, Buehler M J. Interface structure and mechanics between graphene and metal substrates: A first-principles study[J]. Journal of Physics: Condensed Matter,2010,22(48):485301. doi: 10.1088/0953-8984/22/48/485301
    [11]
    Pavithra L P, Sarada B V, Rajulapati K V, et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness[J]. Scientific Reports,2014,4:4049.
    [12]
    Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications,2007,143(1-2):47-57. doi: 10.1016/j.ssc.2007.03.052
    [13]
    Hu Z, Tong G, Nian Q, et al. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites[J]. Composites Part B: Engineering,2016,93:352-359. doi: 10.1016/j.compositesb.2016.03.043
    [14]
    Kuang D, Xu L, Liu L, et al. Graphene nickle composite[J]. Applied Surface Science,2013,273(0):484-490.
    [15]
    Zengrong H, Feng C, Dong L, et al. Laser additive manufacturing bulk graphene-copper nanocomposites[J]. Nanotechnology,2017,28(44):445705. doi: 10.1088/1361-6528/aa8946
    [16]
    Sadowski P, Kowalczyk-Gajewska K, Stupkiewicz S. Classical estimates of the effective thermoelastic properties of copper-graphene composites[J]. Composites Part B: Engineering,2015,80:278-290. doi: 10.1016/j.compositesb.2015.06.007
    [17]
    Algul H, Tokur M, Ozcan S, et al. The effect of graphene content and sliding speed on the wear mechanism of nickel-graphene nanocomposites[J]. Applied Surface Science,2015,359:340-348. doi: 10.1016/j.apsusc.2015.10.139
  • 20190095supporting materials-gr-cu.docx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(595) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return