Volume 36 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
FANG Li-yang, ZHENG Jing-tang. Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure. New Carbon Mater., 2021, 36(3): 625-631. doi: 10.1016/S1872-5805(21)60031-8
Citation: FANG Li-yang, ZHENG Jing-tang. Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure. New Carbon Mater., 2021, 36(3): 625-631. doi: 10.1016/S1872-5805(21)60031-8

Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure

doi: 10.1016/S1872-5805(21)60031-8
Funds:  This work is financially supported by the Science Development Plan Project of Weifang City, Shandong Province, China (No. 2018GX106)
More Information
  • Author Bio:

    方黎洋,博士,副教授. E-mail:fangly609@sina.com

  • Corresponding author: ZHENG Jing-tang, Professor. E-mail: jtzheng03@163.com
  • Received Date: 2019-12-05
  • Rev Recd Date: 2020-07-12
  • Available Online: 2021-04-28
  • Publish Date: 2021-06-01
  • Two kinds of carbon quantum dots, C-dots-160 and C-dots-200 with different fluorescence luminescence behaviors were synthesized by a one-step hydrothermal method at 160 and 200 °C, respectively, using ammonium citrate as the raw material. The relationship between the microstructure of the C-dots and the fluorescence emission behavior was investigated. Results indicate that an increase of synthesis temperature introduces more oxygen and nitrogen atoms into the C-dots, increasing the total number of structural defects and altering their concentation ratio . It is this ratio difference in the two C-dots that causes their different luminescence behaviors. The proportion of several types of defects in the C-dots-200 are relatively balanced, leading to excitation wavelength-dependent fluorescence while the most abundant defects in C-dots-160 are in the form of C=O, which is the main reason for its excitation independent luminescence behavior. The number of structural defects in C-dots-160 is less than in C-dots-200 and the latter has the stronger fluorescence emission.
  • loading
  • [1]
    Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128(24):7756-7757. doi: 10.1021/ja062677d
    [2]
    Molaei M J. Carbon quantum dots and their biomedical and therapeutic applications: a review[J]. RSC Advances,2019,9(12):6460-6481. doi: 10.1039/C8RA08088G
    [3]
    Li H T, He X D, Kang Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition,2010,49(26):4430-4434. doi: 10.1002/anie.200906154
    [4]
    Wang H, Sun P F, Cong S, et al. Nitrogen-doped carbon dots for “green” quantum dot solar cells[J]. Nanoscale Research Letters,2016,11(1):27-33. doi: 10.1186/s11671-016-1231-1
    [5]
    Fang L Y, Zhang L, Chen Z Z, et al. Ammonium citrate derived carbon quantum dot as onoff-on fluorescent sensor for detection of chromium(VI) and sulfites[J]. Materials Letters,2017,191(15):1-4.
    [6]
    Han G M, Zhao J, Zhang R L, et al. Membrane penetrating carbon quantum dots for imaging nucleic acid structures in live organisms[J]. Angew Chenu Int Ed,2019,58(21):7087-7091. doi: 10.1002/anie.201903005
    [7]
    Athika M, Prasath A, Duraisamy E, et al. Carbon quantum dots derived from denatured milk for efficient chromium-ion sensing and supercapacit or applications[J]. Materials Letters,2019,241(1):156-159.
    [8]
    Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantum dots[J]. Small,2008,4(4):455-458. doi: 10.1002/smll.200700578
    [9]
    Li X M, Zhang S L, Kulinich S A, et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Scientific Reports,2014,4(5):1-8.
    [10]
    Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS nano,2016,10(1):484-491. doi: 10.1021/acsnano.5b05406
    [11]
    Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chemical Communications,2008,7(41):5116-5118.
    [12]
    Baker S N, Baker G A. Luminescent carbon nanodots: Emergent nanolights[J]. Angewandte Chemie International Edition,2010,49(38):6726-6744. doi: 10.1002/anie.200906623
    [13]
    Krysmann M J, Kelarakis A, Dallas P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J]. Journal of the American Chemical Society,2012,134(2):747-750. doi: 10.1021/ja204661r
    [14]
    Nie H, Li M J, Li Q S, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing[J]. Chemistry of Materials,2014,26(10):3104-3112. doi: 10.1021/cm5003669
    [15]
    Fang L Y, Xu Q, Zheng X, et al. Soy flour-derived carbon dots: facile preparation, fluorescence enhancement, and sensitive Fe3+ detection[J]. Journal of Nanoparticle Research,2016,18(8):1-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(665) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return