Volume 36 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
LI Li-ping, REN Xiao-feng, BAI Pei-rong, LIU Yan, XU Wei-yue, XIE Jun, ZHANG Rui-ping. Near-infrared emission carbon dots for bio-imaging applications. New Carbon Mater., 2021, 36(3): 632-638. doi: 10.1016/S1872-5805(21)60041-0
Citation: LI Li-ping, REN Xiao-feng, BAI Pei-rong, LIU Yan, XU Wei-yue, XIE Jun, ZHANG Rui-ping. Near-infrared emission carbon dots for bio-imaging applications. New Carbon Mater., 2021, 36(3): 632-638. doi: 10.1016/S1872-5805(21)60041-0

Near-infrared emission carbon dots for bio-imaging applications

doi: 10.1016/S1872-5805(21)60041-0
Funds:  We thank Prof. LIU Yaodong and Dr. Mohammad Sohail for their written support. This work was financially supported by the National Natural Science Foundation of China (82001962), China Postdoctoral Science Foundation (2019M661056), Shanxi Province Science Foundation for Youths (201901D211337), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0407)
More Information
  • Author Bio:

    李利平,讲师. E-mail: liliping_8103@163.com

  • Corresponding author: XIE Jun, Professor. E-mail: junxie@sxmu.edu.cn; ZHANG Rui-ping, Professor. E-mail: zrp_7142@sxmu.edu.cn
  • Received Date: 2021-04-07
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-05-26
  • Publish Date: 2021-06-01
  • It is very difficult to prepare red/near-infrared emission carbon dots (CDs) for bio-imaging applications which are needed because of their deep tissue penetration, minimal auto-fluorescence, and low emission light damage to bio-tissues. Near-infrared emitting CDs (NIR-CDs) were synthesized from sulfonated tetraphenylporphyrin using a solvothermal method. They have excitation-independent properties with a maximum emission at 692 nm. Studies showed that this unique near-infrared emission mainly originated from the aggregated molecular states of the CDs. The NIR-CDs showed good water solubility, exceptional biocompatibility, low toxicity, and superior cellular labelling ability. This work could significantly advance the structural design and preparation of NIR-CDs and corresponding bio-imaging applications.
  • loading
  • [1]
    Li L P, Lu C C, Li S J, et al. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications[J]. Journal of Materials Chemistry B,2017,5:1935-1942.
    [2]
    Jia Q Y, Zhao Z Y, Liang K, et al. Recent advances and prospects of carbon dots in cancer nanotheranostics[J]. Materials Chemistry Frontiers,2020,4:449-471. doi: 10.1039/C9QM00667B
    [3]
    Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo[J]. Journal of the American Chemical Society,2009,131:11308-11309. doi: 10.1021/ja904843x
    [4]
    Li J Y, Liu Y, Shu Q W, et al. One-pot hydrothermal synthesis of carbon dots with efficient up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay[J]. Langmuir,2017,33:1043-1050. doi: 10.1021/acs.langmuir.6b04225
    [5]
    Reyes D, Camacho M, Camacho M, et al. Laser ablated carbon nanodots for light emission[J]. Nanoscale Research Letters,2016,11:424. doi: 10.1186/s11671-016-1638-8
    [6]
    De Medeiros T V, Manioudakis J, Noun F, et al. Microwave-assisted synthesis of carbon dots and their applications[J]. Journal of Materials Chemistry C,2019,7:7175-7195. doi: 10.1039/C9TC01640F
    [7]
    Liu M L, Xu Y H, NIU F, et al. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging[J]. Analyst,2016,141(9):2657-2664. doi: 10.1039/C5AN02231B
    [8]
    Zhang X Y, Jiang M Y, Niu N, et al. Natural-product-derived carbon dots: from natural products to functional materials[J]. ChemSusChem,2018,11:11-24. doi: 10.1002/cssc.201701847
    [9]
    Jiang K, Zhang L, Lu J, et al. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting[J]. Angewandte Chemie International Edition,2016,55:7231-7235. doi: 10.1002/anie.201602445
    [10]
    Wu Z L, Zhang P, Gao M X, et al. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins[J]. Journal of Materials Chemistry B,2013,1:2868-2873. doi: 10.1039/c3tb20418a
    [11]
    Unnikrishnan B, Wu R S, Wei S C, et al. Fluorescent carbon dots for selective labelling of subcellular organelles[J]. ACS Omega,2020,5:11248-11261. doi: 10.1021/acsomega.9b04301
    [12]
    Du J J, Xu N, Fan J L, et al. Carbon dots for in vivo bioimaging and theranostics[J]. Small,2019,15:1805087. doi: 10.1002/smll.201805087
    [13]
    Zhang J, Yu S H. Carbon dots: large-scale synthesis, sensing and bioimaging[J]. Materials Today,2016,19:382-393. doi: 10.1016/j.mattod.2015.11.008
    [14]
    Wang Q L, Huang X X, Long Y J, et al. Hollow luminescent carbon dots for drug delivery[J]. Carbon,2013,59:192-199. doi: 10.1016/j.carbon.2013.03.009
    [15]
    Sun S, Zhang L, Jiang K, et al. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents[J]. Chemistry of Materials,2016,28:8659-8668. doi: 10.1021/acs.chemmater.6b03695
    [16]
    Li H X, Su D D, Gao H, et al. Design of red emissive carbon dots: Robust performance for analytical applications in pesticide monitoring[J]. Analytical Chemistry,2020,92:3198-3205. doi: 10.1021/acs.analchem.9b04917
    [17]
    Gao W L, Song H H, Wang X, et al. Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo[J]. ACS Applied Materials & Interfaces,2018,10:1147-1154.
    [18]
    Gao Y F, Jiao Y, Lu W J, et al. Carbon dots with red emission as a fluorescent and colourimeteric dual-readout probe for the detection of chromium(vi) and cysteine and its logic gate operation[J]. Journal of Materials Chemistry B,2018,6:6099-6107. doi: 10.1039/C8TB01580E
    [19]
    Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-colour emission tuning and multicolour cellular imaging[J]. Angewandte Chemie International Edition,2015,54:5360-5363. doi: 10.1002/anie.201501193
    [20]
    Tan X Y, Li Y C, Li X H, et al. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform[J]. Chemical Communications,2015,51:2544-2546. doi: 10.1039/C4CC09332A
    [21]
    Liu M L, Chen B B, Li C M, et al. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing application[J]. Green Chemistry,2019,21:449-471. doi: 10.1039/C8GC02736F
    [22]
    Li L P, Zhang R P, Lu C X, et al. In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications[J]. Journal of Materials Chemistry B,2017,5:7328-7334. doi: 10.1039/C7TB00634A
    [23]
    Pan L L, Sun S, Zhang L, et al. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging[J]. Nanoscale,2016,8:17350-17356. doi: 10.1039/C6NR05878G
    [24]
    Jiang K, Hu S Z, Wang Y C, et al. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots[J]. Small,2020,16:2001909. doi: 10.1002/smll.202001909
    [25]
    Stobinski L, Lesiak B, Malolepszy A, et al. Graphene oxide and reduced graphene oxide studies by the XRD, TEM and electron spectroscopy methods[J]. Journal of Electron Spectroscopy and Related Phenomena,2014,195:145-154. doi: 10.1016/j.elspec.2014.07.003
    [26]
    Lei L, Wang W J, Wang C, et al. In situ growth of boron doped g-C3N4 on carbon fiber cloth as a recycled flexible film-photocatalyst[J]. Ceramics International,2021,47:1258-1267. doi: 10.1016/j.ceramint.2020.08.246
    [27]
    Pan L L, Sun S, Zhang A D, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolour cellular imaging and multidimensional sensing[J]. Advanced Materials,2015,27:7782-7787. doi: 10.1002/adma.201503821
    [28]
    Li W K, Feng J-T, Ma Z- Q. Nitrogen, sulfur, boron and flavonoid moiety co-incorporated carbon dots for sensitive fluorescence detection of pesticides[J]. Carbon,2020,161:685-693. doi: 10.1016/j.carbon.2020.01.098
    [29]
    Sun W, Meng X, Xu C, et al. Amorphous CoOx coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction[J]. Chinese Journal of Catalysis,2020,41:1826-1836. doi: 10.1016/S1872-2067(20)63646-4
    [30]
    Ye Q H, Yan F Y, Luo Y M, et al. Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2017,173:854-862. doi: 10.1016/j.saa.2016.10.039
    [31]
    Wang L, Li W T, Yin L Q. Full-colour fluorescent carbon quantum dots[J]. Science Advances,2020,6:eabb6772. doi: 10.1126/sciadv.abb6772
    [32]
    Ding K Q, Zhou L J, Qu R L. Honeycomb-shaped carbon particles prepared from bicycle waste tires for anodes in lithium ion batteries[J]. Materials Chemistry and Physics,2020,251:123202. doi: 10.1016/j.matchemphys.2020.123202
    [33]
    Samantara A K, Chandra S S, Ghosh A. Sandwiched graphene with nitrogen, sulphur co-doped CQDs:An efficient metal-free material for energy storage and conversion applications[J]. Journal of Materials Chemistry A,2015,3:16961-16970. doi: 10.1039/C5TA03376D
    [34]
    Palaniappan S, Amarnath C. A. Polyaniline-dodecylhydrogensulfate-acid salt: Synthesis and characterization[J]. Materials Chemistry and Physics,2005,92:82-88. doi: 10.1016/j.matchemphys.2004.12.033
    [35]
    Hoang V C, Nguyen L H., Gomes V G, et al. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite[J]. Journal of Electroanalytical Chemistry,2019,832:87-96. doi: 10.1016/j.jelechem.2018.10.050
    [36]
    Dager A, Uchida T, Maekawa T, et al. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: Photoluminescence analysis using machine learning[J]. Scientific Reports,2019,9:14004. doi: 10.1038/s41598-019-50397-5
    [37]
    Zhang J, Zhang X Y, Dong S S, et al. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight[J]. Journal of Photochemistry and Photobiology A: Chemistry,2016,325:104-110. doi: 10.1016/j.jphotochem.2016.04.012
    [38]
    Li Y Y, Chen J J, Wang Y P, et al. Large-scale direct pyrolysis synthesis of excitation-independent carbon dots and analysis of ferric (III) ion sensing mechanism[J]. Applied Surface Science,2021,538:148-151.
    [39]
    Liu T, Li N, Dong J X, et al. Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and implicationlogic gate operation[J]. Sensors and Actuators B: Chemical,2016,231:147-153. doi: 10.1016/j.snb.2016.02.141
    [40]
    Sun X C, BRüCKNER C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission[J]. Nanoscale,2015,7:17278-17282. doi: 10.1039/C5NR05549K
    [41]
    Perepichka D, Bryce M. Molecules with exceptionally small HOMO-LOMO gaps[J]. Angewandte Chemie International Edition,2005,44(34):5370-5373. doi: 10.1002/anie.200500413
  • 20210091-SI.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(588) PDF Downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return