Volume 37 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
YANG Na-na, CHEN Zhi-gang, ZHAO Zhi-gang, CUI Yi. Electrochemical fabrication of ultrafine g-C3N4 quantum dots as a catalyst for the hydrogen evolution reaction. New Carbon Mater., 2022, 37(2): 392-401. doi: 10.1016/S1872-5805(21)60045-8
Citation: YANG Na-na, CHEN Zhi-gang, ZHAO Zhi-gang, CUI Yi. Electrochemical fabrication of ultrafine g-C3N4 quantum dots as a catalyst for the hydrogen evolution reaction. New Carbon Mater., 2022, 37(2): 392-401. doi: 10.1016/S1872-5805(21)60045-8

Electrochemical fabrication of ultrafine g-C3N4 quantum dots as a catalyst for the hydrogen evolution reaction

doi: 10.1016/S1872-5805(21)60045-8
Funds:  We would like to acknowledge the financial support from Natural Science Foundation of China (91845109, 21872169, 22109171, 22172190), Y.C. would like to acknowledge the support from the CAS Project for Young Scientists in Basic Research (YSBR-022) and the Young Cross Team Project of CAS (JCTD-2021-14). Z.C. would like to acknowledge the support from Jiangsu Planned Projects for Postdoctoral Researc Funds (2021K226B)
More Information
  • Author Bio:

    杨娜娜,硕士研究生. E-mail:nnyang2019@sinano.ac.cn

  • Corresponding author: CUI Yi, Professor. E-mail: ycui2015@sinano.ac.cn
  • Received Date: 2021-03-09
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-06-03
  • Publish Date: 2022-03-30
  • Because of its high concentration of in-plane elemental nitrogen, superior chemical/thermal stability, tunable electronic band structure and environmentally friendly nature, graphite-like carbon nitride (g-C3N4) is a new promising metal-free material that has drawn much attention in photo-/electric catalysis. Compared with the regulation of the band structure in photocatalysis, the deliberate synthesis of g-C3N4 electrocatalysts is mainly focused on the construction of catalytic sites and the modulation of the charge transfer kinetics. This work reports a rapid method for synthesizing ultrafine g-C3N4 quantum dots (QDs) by electrochemical exfoliation using Al3+ ions as an intercalation agent. Uniform g-C3N4 QDs with small lateral size and thickness were collected more easily due to the higher charge density and stronger electrostatic force of Al3+ ions in the lattice of the host material, compared to conventional univalent alkali cations. The QDs had an average lateral dimension and thickness of 3.5 nm and 1.0 nm, respectively, as determined by TEM and AFM measurements. The presence of a large number of C/N defects was verified by the UV-vis spectra. The ultrafine g-C3N4 QDs had a superior hydrogen evolution reaction performance with an ultra-low onset-potential approaching 0 V, and a low overpotential of 208 mV at 10 mA cm−2, as well as a remarkably low Tafel slope (52 mV·dec−1) in an acidic electrolyte.
  • loading
  • [1]
    Zhang J, Wang T, Liu P, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics[J]. Nature Communications,2017,8:15437. doi: 10.1038/ncomms15437
    [2]
    Gong Q F, Wang Y, Hu Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature Communications,2016,7:13216. doi: 10.1038/ncomms13216
    [3]
    Wang J, Xu F, Jin H Y, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Advanced Materials,2017,29(14):1605838. doi: 10.1002/adma.201605838
    [4]
    Chen Z Y, Song Y, Cai J Y, et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis[J]. Angewandte Chemie-International Edition,2018,57(18):5076-5080. doi: 10.1002/anie.201801834
    [5]
    Han N N, Yang K R, Lu Z Y, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid[J]. Nature Communications,2018,9:924. doi: 10.1038/s41467-018-03429-z
    [6]
    Zheng Z X, Lu R T, Huang Z H, et al. Carbon materials for use in the electrocatalytic hydrogen evolution reaction[J]. New Carbon Materials,2019,34(2):115-131.
    [7]
    Hu C L, Zhang L, Gong J L. Recent progress of mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy Environmental Science,2019,12(9):2620-2645. doi: 10.1039/C9EE01202H
    [8]
    Luo Y T, Li X, Cai X K, et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes[J]. ACS Nano,2018,12(5):4565-4573. doi: 10.1021/acsnano.8b00942
    [9]
    Yan Y, Xia B Y, Zhao B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A,2016,4(45):17587-17603. doi: 10.1039/C6TA08075H
    [10]
    Ye X W, Hu L B, Liu M C, et al. Improved oxygen reduction performance of a N, S co-doped graphene-like carbon prepared by a simple carbon bath method[J]. New Carbon Materials,2020,35(5):531-539. doi: 10.1016/S1872-5805(20)60506-6
    [11]
    Zhang J, Chen G B, Müllen K, et al. Carbon-rich nanomaterials: Fascinating hydrogen and oxygen electrocatalysts[J]. Advanced Materials,2018,30(40):1800528. doi: 10.1002/adma.201800528
    [12]
    Rao C N R, Chhetri M. Borocarbonitrides as metal-free catalysts for the hydrogen evolution reaction[J]. Advanced Materials,2019,31(13):1803668. doi: 10.1002/adma.201803668
    [13]
    Zheng Y, Jiao Y, Zhu Y H, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications,2014,5:3783. doi: 10.1038/ncomms4783
    [14]
    Zhao Y, Zhao F, Wang X P, et al. Graphitic carbon nitride nanoribbons: Graphene-assisted formation and synergic function for highly efficient hydrogen evolution[J]. Angewandte Chemie-International Edition,2014,53(50):13934-13939. doi: 10.1002/anie.201409080
    [15]
    Pei Z X, Zhao J X, Huang Y, et al. Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping[J]. Journal of Materials Chemistry A,2016,4(31):12205-12211. doi: 10.1039/C6TA03588D
    [16]
    Chen W S, Gu J J, Liu Q L, et al. Quantum dots of 1T phase transitional metal dichalcogenides generated via electrochemical Li intercalation[J]. ACS Nano,2018,12(1):308-316. doi: 10.1021/acsnano.7b06364
    [17]
    Yin X Y, Yan Y, Miao M, et al. Quasi-emulsion confined synthesis of edge-rich ultrathin MoS2 nanosheets/graphene hybrid for enhanced hydrogen evolution[J]. Chemistry-A European Journal,2018,24(3):556-560. doi: 10.1002/chem.201703493
    [18]
    Zeng Z Y, Sun T, Zhu J X, et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets[J]. Angewandte Chemie-International Edition,2012,51(36):9052-9056. doi: 10.1002/anie.201204208
    [19]
    Zhang X D, Xie X, Wang H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society,2013,135(1):18-21. doi: 10.1021/ja308249k
    [20]
    Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature,2012,488(7411):294-303. doi: 10.1038/nature11475
    [21]
    Cong S, Tian Y Y, Li Q W, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications[J]. Advanced Materials,2014,26(25):4260-4267. doi: 10.1002/adma.201400447
    [22]
    Wang T, Nie C Y, Ao Z M, et al. Recent progress in g-C3N4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants[J]. Journal of Materials Chemistry A,2020,8(2):485-502. doi: 10.1039/C9TA11368A
    [23]
    Chen Z G, Tao Z X, Cong S, et al. Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection[J]. Chemical Communications,2016,52(76):11442-11445. doi: 10.1039/C6CC06325J
    [24]
    Zhang X, Luo Z M, Yu P, et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution[J]. Nature Catalysis,2018,1(6):460-468. doi: 10.1038/s41929-018-0072-y
    [25]
    Ren X P, Pang L Q, Zhang Y X, et al. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A,2015,3(20):10693-10697. doi: 10.1039/C5TA02198G
    [26]
    Chen Z G, Li L H, Cong S, et al. Rapid synthesis of sub-5 nm sized cubic boron nitride nanocrystals with high-piezoelectric behavior via electrochemical shock[J]. Nano Letters,2017,17(1):355-361. doi: 10.1021/acs.nanolett.6b04272
    [27]
    Bian J Y, An X Q, Jiang W, et al. Defect-enhanced activation of carbon nitride/horseradish peroxidase nanohybrids for visible-light-driven photobiocatalytic water purification[J]. Chemical Engineering Journal,2021,408:127231. doi: 10.1016/j.cej.2020.127231
    [28]
    Wu Y X, Liu L M, An X Q, et al. New insights into interfacial photocharge transfer in TiO2/C3N4 heterostructures: Effects of facets and defects[J]. New Journal of Chemistry,2019,43(11):4511-4517. doi: 10.1039/C9NJ00027E
    [29]
    Ahsan M A, He T W, Eid K, et al. Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry[J]. Journal of the American Chemical Society,2021,143(2):1203-1215. doi: 10.1021/jacs.0c12386
    [30]
    Suragtkhuu S, Bat-Erdene M, Bati A S R, et al. Few-layer black phosphorus and boron-doped graphene based heteroelectrocatalyst for enhanced hydrogen evolution[J]. Journal of Materials Chemistry A,2020,8(39):20446-20452. doi: 10.1039/D0TA07659G
    [31]
    Deng B L, Wang D, Jiang Z Q, et al. Amine group induced high activity of highly torn amine functionalized nitrogen-doped graphene as the metal-free catalyst for hydrogen evolution reaction[J]. Carbon,2018,138:169-178. doi: 10.1016/j.carbon.2018.06.008
    [32]
    Wu H B, Xia B Y, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications,2015,6:6512. doi: 10.1038/ncomms7512
    [33]
    Deng S J, Yang F, Zhang Q H, et al. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction[J]. Advanced Materials,2018,33(34):1802223.
    [34]
    Zhu J, Hu L S, Zhao P X, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews,2020,120(2):851-918. doi: 10.1021/acs.chemrev.9b00248
    [35]
    Wang H, Yuan X Z, Wang H, et al. Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance[J]. Applied Catalysis B-Environmental,2016,193:36-46. doi: 10.1016/j.apcatb.2016.03.075
    [36]
    Cui Q L, Xu J S, Wang X Y, et al. Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior[J]. Angewandte Chemie-International Edition,2016,55(11):3672-3676. doi: 10.1002/anie.201511217
    [37]
    Wang X P, Wang L X, Zhao F, et al. Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction[J]. Nanoscale,2015,7(7):3035-3042. doi: 10.1039/C4NR05343E
    [38]
    Zhang X D, Wang H X, Wang H, et al. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Advanced Materials,2014,26(26):4438. doi: 10.1002/adma.201400111
    [39]
    Chen X, Liu Q, Wu Q L, et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement[J]. Advanced Functional Materials,2016,26(11):1719-1728. doi: 10.1002/adfm.201505321
    [40]
    Zhan Y, Liu Z M, Liu Q Q, et al. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications[J]. New Journal of Chemistry,2017,41(10):3930-3938. doi: 10.1039/C7NJ00058H
    [41]
    Song Z P, Lin T R, Lin L H, et al. Invisible security ink based on water-Soluble graphitic carbon nitride quantum dots[J]. Angewandte Chemie-International Edition,2016,55(8):2773-2777. doi: 10.1002/anie.201510945
    [42]
    Wang W, Yu J C, Shen Z, et al. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application[J]. Chemical Communications,2014,50(70):10148-10150. doi: 10.1039/C4CC02543A
    [43]
    Bai G Y, Song Z P, Geng H Y, et al. Oxidized quasi-carbon nitride quantum dots inhibit ice growth[J]. Advanced Materials,2017,29(28):1606843. doi: 10.1002/adma.201606843
    [44]
    Zhou J, Yang Y, Zhang C Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission[J]. Chemical Communications,2013,49(77):8605. doi: 10.1039/c3cc42266f
    [45]
    Barman S, Sadhukhan M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media[J]. Journal of Materials Chemistry,2012,22(41):21832-21837. doi: 10.1039/c2jm35501a
    [46]
    Liu S, Tian J Q, Wang L, et al. Preparation of photoluminescent carbon nitride dots from CCl4 and 1, 2-ethylenediamine: a heat-treatment-based strategy[J]. Journal of Materials Chemistry,2011,21(32):11726-11729. doi: 10.1039/c1jm12149a
    [47]
    Li G S, Lian Z L, Wang W C, et al. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy,2016,19:446-454. doi: 10.1016/j.nanoen.2015.10.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article Views(1615) PDF Downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return