Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
AI Jie, LIU Zi-wu, SUN Mao-mao, LIU Ling, WANG Quan-de. A correlation of the hydrogen evolution reaction activity to the number of defects formed by the decomposition of doped phosphorus species in carbon nanotubes. New Carbon Mater., 2022, 37(4): 773-780. doi: 10.1016/S1872-5805(21)60052-5
Citation: AI Jie, LIU Zi-wu, SUN Mao-mao, LIU Ling, WANG Quan-de. A correlation of the hydrogen evolution reaction activity to the number of defects formed by the decomposition of doped phosphorus species in carbon nanotubes. New Carbon Mater., 2022, 37(4): 773-780. doi: 10.1016/S1872-5805(21)60052-5

A correlation of the hydrogen evolution reaction activity to the number of defects formed by the decomposition of doped phosphorus species in carbon nanotubes

doi: 10.1016/S1872-5805(21)60052-5
More Information
  • Corresponding author: LIU Zi-wu. E-mail: lzwmsy@cumt.edu.cn; WANG Quan-de. E-mail: 306088995@qq.com
  • Received Date: 2020-09-11
  • Rev Recd Date: 2020-11-27
  • Available Online: 2021-03-16
  • Publish Date: 2022-07-20
  • Phosphorus-doped carbon materials are one of the novel carbon catalysts for the hydrogen evolution reaction (HER) that have attracted considerable attention in recent years. However, the role of C―P species played in the HER activity is still not clear. Phosphorus-doped carbon nanotubes were prepared by chemical vapor deposition and annealed at 900, 1000 and 1200 °C to remove all or part of the phosporus, resulting in four samples with different amounts of substitutional-, pyridine- and pyrrole-like P species. The correlations between the HER activity and the contents of the three species were investigated. Results showed that the content of substitutional P decreased with annealing temperature and none was retained at 1200 °C. The HER activity increased with annealing temperature and the sample annealed at 1200 °C had the highest HER activity in an acid medium with an overpotential of 0.266 V at a current density of 10 mA cm−2. Density functional theory calculations showed that the pentagon- and nine-membered ring defects formed by the elimination of substitutional P mainly contributed to the HER activity.
  • loading
  • [1]
    Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angew Chem Int Ed,2011,50:3257-3261. doi: 10.1002/anie.201006768
    [2]
    Liu Z W, Peng F, Wang H J, et al. Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium[J]. Catal Commun,2011,16:35-38. doi: 10.1016/j.catcom.2011.08.038
    [3]
    Liu Z W, Peng F, Wang H J, et al. Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O2 reduction[J]. J Nat Gas Chem,2012,21:257-264. doi: 10.1016/S1003-9953(11)60362-9
    [4]
    Hou H S, Shao L D, Zhang Y, et al. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries[J]. Adv Sci,2017,4:1600243. doi: 10.1002/advs.201600243
    [5]
    Li K, Hu Z Y, Ma J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Adv Mater,2019,31:1902399. doi: 10.1002/adma.201902399
    [6]
    Wang J X, Xia Y, Liu Y, et al. Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries[J]. Energy Storage Materials,2019,22:147-153. doi: 10.1016/j.ensm.2019.01.008
    [7]
    Wen Y Y, Wang B, Huang C C, et al. Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors[J]. Chem Eur J,2014,20:1-7. doi: 10.1002/chem.201390210
    [8]
    Yang W, Yang W, Kong L N, et al. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition[J]. Carbon,2018,127:557-567. doi: 10.1016/j.carbon.2017.11.050
    [9]
    Lv B J, Li P P, Liu Y, et al. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes[J]. Applied Surface Science,2018,437:169-175. doi: 10.1016/j.apsusc.2017.12.171
    [10]
    Zheng Y, Jiao Y, Li L H, et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution[J]. ACS Nano,2014,8:5290-5296. doi: 10.1021/nn501434a
    [11]
    Xiao Z H, Huang X B, Xu L, et al. Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction[J]. Chen Commun,2016,52:13008-13011. doi: 10.1039/C6CC07217H
    [12]
    Jiang H L, Zhu Y H, Su Y H, et al. Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction[J]. J Mater Chem A,2015,3:12642-12645. doi: 10.1039/C5TA02792F
    [13]
    Liu Z W, Ai J, Sun M M, et al. Phosphorous-doped graphite layers with outstanding electrocatalytic activities for the oxygen and hydrogen evolution reactions in water electrolysis[J]. Adv Funct Mater,2020,30:1910741. doi: 10.1002/adfm.201910741
    [14]
    Mcevoy N, Peltekis N, Kumar S, et al. Synthesis and analysis of thin conducting pyrolytic carbon films[J]. Carbon,2012,50:1216-1226. doi: 10.1016/j.carbon.2011.10.036
    [15]
    Zhou Y, Ma R G, Candelaria S L, et al. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction[J]. J Power Sources,2016,314:39-48. doi: 10.1016/j.jpowsour.2016.03.009
    [16]
    Tian X D, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochim Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [17]
    Liu Z J, Zhao Z H, Wang Y Y, et al. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis[J]. Adv Mater,2017,29:1606207. doi: 10.1002/adma.201606207
    [18]
    Bi Z H, Luo L, Kong Q Q, et al. Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface[J]. ACS Appl Mater Interfaces,2019,11:11421-11430. doi: 10.1021/acsami.8b21903
  • 20200168 -Supporting Information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article Views(638) PDF Downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return