Volume 36 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
ZHANG Xiao-hua, GAN Xin-yu, LIU Bao-sheng, YAN Xiao-yan, ZHAO Xin-xin. An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes. New Carbon Mater., 2021, 36(3): 594-605. doi: 10.1016/S1872-5805(21)60062-8
Citation: ZHANG Xiao-hua, GAN Xin-yu, LIU Bao-sheng, YAN Xiao-yan, ZHAO Xin-xin. An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes. New Carbon Mater., 2021, 36(3): 594-605. doi: 10.1016/S1872-5805(21)60062-8

An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes

doi: 10.1016/S1872-5805(21)60062-8
More Information
  • Corresponding author: ZHANG Xiao-hua. E-mail: xiaohuaz@tyust.edu.cn; LIU Bao-sheng. E-mail: liubaosheng@tyust.edu.cn
  • Received Date: 2021-03-01
  • Rev Recd Date: 2021-04-02
  • Available Online: 2021-05-08
  • Publish Date: 2021-06-01
  • Graphitic hollow porous carbon spheres (GHPCSs) have the advantages of a unique cavity structure, high surface area and excellent conductivity, and are promising electrode materials for energy storage. A Fe–tannic acid (TA) framework synthesized using TA as the carbon source and K3 [Fe(C2O4)3] as a complexing agent, was self-assembled onto a melamine foam, which was converted to GHPCSs by carbonization, where the K3 [Fe(C2O4) 3] also acts as an activating-graphitizing agent. The outer shell of the as-prepared GHPCSs has a large specific surface area, a micropore-dominated structure and excellent electrical conductivity, which ensure a large enough active surface area for charge accumulation and fast ion/electron transport in the partially graphitized carbon framework and pores. The optimum GHPCS has a high capacitance of 332.7 F g−1 at 1 A g−1. An assembled symmetric supercapacitor has a high energy density of 23.7 Wh kg−1 at 459.1 W kg−1 in 1 mol L-1 Na2SO4. In addition, the device has long-term cycling stability with a 92.1% retention rate after 10 000 cycles. This study not only provides an economic and time-saving approach for constructing GHPCSs by a self-assembly method, but also optimizes ion/electron transport in the carbon spheres to give them excellent performance in capacitive energy storage.
  • loading
  • [1]
    Zhu Z, Xu Z. The rational design of biomass-derived carbon materials towards next-generation energy storage: A review[J]. Renewable and Sustainable Energy Reviews,2020,134:110308. doi: 10.1016/j.rser.2020.110308
    [2]
    Perovic M, Qin Q, Oschatz M. From molecular precursors to nanoparticles-tailoring the adsorption properties of porous carbon materials by controlled chemical functionalization[J]. Advanced Functional Materials,2020,30(41):1908371. doi: 10.1002/adfm.201908371
    [3]
    Luo X, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials,2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5
    [4]
    Yang Y, Yuan W, Kang W, et al. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective[J]. Sustainable Energy & Fuels,2020,4(4):1577-1594.
    [5]
    Wang J, Kong H, Zhang J, et al. Carbon-based electrocatalysts for sustainable energy applications[J]. Progress in Materials Science,2021,116:100717. doi: 10.1016/j.pmatsci.2020.100717
    [6]
    Yu Z, Liu M, Guo D, et al. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2020,59(16):6406-6411. doi: 10.1002/anie.201914972
    [7]
    Qian X, Miao L, Jiang J, et al. Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors[J]. Chemical Engineering Journal,2020,388:124208. doi: 10.1016/j.cej.2020.124208
    [8]
    Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [9]
    Liu T, Zhang L, Cheng B, et al. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage[J]. Advanced Energy Materials,2019,9(17):1803900. doi: 10.1002/aenm.201803900
    [10]
    Xue D, Zhu D, Xiong W, et al. Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):7024-7034.
    [11]
    Cui Y, Qin L, Kang W, et al. Magnetic carbon nanospheres: Synthesis, characterization, and adsorbability towards quinoline from coking wastewater[J]. Chemical Engineering Journal,2020:382.
    [12]
    Ng S W L, Yilmaz G, Ong W L, et al. One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage[J]. Applied Catalysis B: Environmental,2018,220:533-541. doi: 10.1016/j.apcatb.2017.08.069
    [13]
    Liu J, Wang X, Gao J, et al. Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors[J]. Electrochimica Acta,2016,211:183-192. doi: 10.1016/j.electacta.2016.05.217
    [14]
    Hu D, Chen C, Liu Q. Fabrication of hollow carbon spheres with robust and significantly enhanced capacitance behaviors[J]. Journal of Materials Science,2018,53(17):12310-12321. doi: 10.1007/s10853-018-2425-y
    [15]
    Wang N, Zhao P, Zhang Q, et al. Monodisperse nickel/cobalt oxide composite hollow spheres with mesoporous shell for hybrid supercapacitor: A facile fabrication and excellent electrochemical performance[J]. Composites Part B: Engineering,2017,113:144-151. doi: 10.1016/j.compositesb.2017.01.041
    [16]
    Du J, Zhang Y, Wu H, et al. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitors[J]. Carbon,2020,156:523-528. doi: 10.1016/j.carbon.2019.09.091
    [17]
    Sun H, Zhu Y, Yang B, et al. Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle[J]. Journal of Materials Chemistry A,2016,4(31):12088-12097. doi: 10.1039/C6TA04330E
    [18]
    Qiu D, Gao A, Xie Z, et al. Homologous hierarchical porous hollow carbon spheres anode and bowls cathode enabling high-energy sodium-ion hybrid capacitors[J]. ACS Appllied Materials & Interfaces,2018,10(51):44483-44493.
    [19]
    Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. doi: 10.1126/science.1132195
    [20]
    Ma F, Sun L, Zhao H, et al. Supercapacitor performance of hollow carbon spheres by direct pyrolysis of melamine-formaldehyde resin spheres[J]. Chemical Research in Chinese Universities, 2013, 29(4): 735-742.
    [21]
    Tian W, Zhang H, Duan X, et al. Porous carbons: structure-oriented design and versatile applications[J]. Advanced Functional Materials,2020:1909265.
    [22]
    Wei J, Liang Y, Hu Y, et al. A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction[J]. Angewandte Chemie International Edition,2016,55(4):1355-1359. doi: 10.1002/anie.201509024
    [23]
    Zhang X, Liu B, Yan X, et al. Design and structure optimization of 3D porous graphitic carbon nanosheets for high-performance supercapacitor[J]. Microporous and Mesoporous Materials,2020,309:110580. doi: 10.1016/j.micromeso.2020.110580
    [24]
    Zhang X, Zhang K, Li H, et al. Porous graphitic carbon microtubes derived from willow catkins as a substrate of MnO2 for supercapacitors[J]. Journal of Power Sources,2017,344:176-184. doi: 10.1016/j.jpowsour.2017.01.107
    [25]
    Zhang X, Li H, Qin B, et al. Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2019,7(7):3298-3306. doi: 10.1039/C8TA11844B
    [26]
    Chen Q, Tan X, Liu Y, et al. Biomass-derived porous graphitic carbon materials for energy and environmental applications[J]. Journal of Materials Chemistry A,2020,8:5773-5811. doi: 10.1039/C9TA11618D
    [27]
    Qiu D, Guan J, Li M, et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors[J]. Advanced Functional Materials,2019,29(32):1903496. doi: 10.1002/adfm.201903496
    [28]
    Hao L, Ning J, Luo B, et al. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors[J]. Journal of the American Chemical Society,2014,137(1):219-225.
    [29]
    Hou J, Jiang K, Wei R, et al. Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors[J]. ACS Applied Materials & Interfaces,2017,9(36):30626-30634.
    [30]
    Gong Y, Li D, Fu Q, et al. Nitrogen self-doped porous carbon for high-performance supercapacitors[J]. ACS Applied Energy Materials,2020,3(2):1585-1592. doi: 10.1021/acsaem.9b02077
    [31]
    Zhang X, Li H, Zhang K, et al. Strategy for preparing porous graphitic carbon for supercapacitor: Balance on porous structure and graphitization degree[J]. Journal of the Electrochemical Society,2018,165(10):A2084-A2092. doi: 10.1149/2.0491910jes
    [32]
    Sun N, Li Z, Zhang X, et al. Hierarchical porous carbon materials derived from kelp for superior capacitive applications[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8735-8743.
    [33]
    Liu M, Niu J, Zhang Z, et al. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors[J]. Nano Energy,2018,51:366-372. doi: 10.1016/j.nanoen.2018.06.037
    [34]
    Yao Y, Zhang Y, Li L, et al. Fabrication of hierarchical porous carbon nanoflakes for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces,2017,9(40):34944-34953.
    [35]
    Rose M, Kockrick E, Senkovska I, et al. High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors[J]. Carbon,2010,48(2):403-407. doi: 10.1016/j.carbon.2009.09.043
    [36]
    Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534-537. doi: 10.1126/science.1239089
    [37]
    Wang D, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie International Edition,2008,47(2):373-376. doi: 10.1002/anie.200702721
    [38]
    Du J, Liu L, Yu Y, et al. N-doped ordered mesoporous carbon spheres derived by confined pyrolysis for high supercapacitor performance[J]. Journal of Materials Science & Technology,2019,35(10):2178-2186.
    [39]
    Du J, Liu L, Yu Y, et al. N-doped hollow carbon spheres/sheets composite for electrochemical capacitor[J]. ACS Applied Materials & Interfaces,2018,10(46):40062-40069.
    [40]
    Ouyang T, Cheng K, Gao Y, et al. Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials[J]. Journal of Materials Chemistry A,2016,4(25):9832-9843. doi: 10.1039/C6TA02673G
    [41]
    Li Y, Liu S, Liang Y, et al. Bark-based 3D porous carbon nanosheet with ultrahigh surface area for high performance supercapacitor electrode material[J]. ACS Sustainable Chemistry & Engineering,2019,7:13827-13835.
    [42]
    Liu B, Liu Y, Chen H, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors[J]. Journal of Power Sources,2017,341:309-317. doi: 10.1016/j.jpowsour.2016.12.022
    [43]
    Sun L, Tian C, Fu Y, et al. Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors[J]. Chemistry-A European Journal,2014,20(2):564-574. doi: 10.1002/chem.201303345
    [44]
    Wang Q, Qin B, Zhang X, et al. Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2018,40(6):19653-19663.
    [45]
    Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of Materials Chemistry A,2013,1(21):6462-6470. doi: 10.1039/c3ta10897j
    [46]
    Ma F, Ma D, Wu G, et al. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors[J]. Chemical Communications,2016,52(40):6673-6676. doi: 10.1039/C6CC02147F
    [47]
    Wang Q, Qin B, Li H X, et al. Honeycomb-like carbon with tunable pore size from bio-oil for supercapacitor[J]. Microporous and Mesoporous Materials,2020,309:110551. doi: 10.1016/j.micromeso.2020.110551
    [48]
    Zhang X, Wang X, Jiang L, et al. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons[J]. Journal of Power Sources,2012,216:290-296. doi: 10.1016/j.jpowsour.2012.05.090
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article Views(5944) PDF Downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return