Volume 37 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
WANG Ke, TANG Fei, YAO Xiao-zhang, Hitanshu Kumar, GAN Lin. Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution. New Carbon Mater., 2022, 37(6): 1183-1192. doi: 10.1016/S1872-5805(21)60078-1
Citation: WANG Ke, TANG Fei, YAO Xiao-zhang, Hitanshu Kumar, GAN Lin. Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution. New Carbon Mater., 2022, 37(6): 1183-1192. doi: 10.1016/S1872-5805(21)60078-1

Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution

doi: 10.1016/S1872-5805(21)60078-1
Funds:  National Natural Science Foundation of China (52173222), Guangdong Pearl River Talent Plan Local Innovation Research Team (2017BT01N111), Outstanding Youth Fund of Guangdong Natural Science Foundation (2016A030306035).
More Information
  • Corresponding author: GAN Lin, Ph.D, Associate Professor. E-mail: lgan@sz.tsinghua.edu.cn
  • Received Date: 2019-05-24
  • Rev Recd Date: 2019-07-23
  • Available Online: 2022-10-24
  • Publish Date: 2022-12-01
  • Hydrogen is considered the most likely alternative clean energy fuel to traditional fossil fuels. One of the most attractive hydrogen production strategies is water splitting, but the need for expensive Pt precious metal catalysts to catalyze the hydrogen evolution reaction (HER) is a problem. Recently, two-dimensional transition metal dichalcogenides (TMDs), especially MoS2, have attracted intense interest as a non-precious metal HER catalyst due to their low cost and relatively high catalytic activity. However, their poor electron conductivity and the limited number of active sites at their edges have greatly limited their overall catalytic performance. We report the direct growth of three representative TMDs (MoS2, NbS2 and WS2) on a conductive carbon paper substrate using chemical vapor deposition and have studied the effects of temperature and gas flow rate on their morphology and structure. All the as-grown TMDs have a 2D nanosheet morphology and were aligned perpendicular to the carbon paper. The WS2 nanosheets had the smallest sheet size with a diameter of ca. 100-200 nm and, more interestingly, were assembled into a one-dimensional nanofiber, leading to the highest HER activity. Additional electrochemical cathodic activation further improved the HER activity of the TMDs, and the structural changes after the activation were investigated by TEM combined with in-situ electrochemical Raman spectroscopy. The activated NbS2 contained large triangular or truncated triangular S vacancy areas, which is distinctly different from the individual S vacancies in MoS2.
  • loading
  • [1]
    Dresselhau MS, Thomas IL. Alternative energy technologies[J]. Nature,2001,414:332-337. doi: 10.1038/35104599
    [2]
    Dunn S. Hydrogen futures toward a sustainable energy system[J]. International Journal of Hydrogen Energy,2002,27:235-264. doi: 10.1016/S0360-3199(01)00131-8
    [3]
    Khaselev O, Turner JA. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting[J]. Science,1998,280:425-427. doi: 10.1126/science.280.5362.425
    [4]
    Funk JE. Thermochemical hydrogen production: past and present[J]. International Journal of Hydrogen Energy,2001,26:185-190. doi: 10.1016/S0360-3199(00)00062-8
    [5]
    Kapdan IK, Kargi F. Bio-hydrogen production from waste materials[J]. Enzyme and microbial technology,2006,38:569-582. doi: 10.1016/j.enzmictec.2005.09.015
    [6]
    Das D, Veziroǧlu TN. Hydrogen production by biological processes: a survey of literature[J]. International journal of hydrogen energy,2001,26:13-28. doi: 10.1016/S0360-3199(00)00058-6
    [7]
    Yan Y, Xia BY, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A,2016,4:17587-17603. doi: 10.1039/C6TA08075H
    [8]
    Choi W, Choudhary N, Han GW, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today,2017,20:116-130. doi: 10.1016/j.mattod.2016.10.002
    [9]
    Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials,2017,2:17033. doi: 10.1038/natrevmats.2017.33
    [10]
    Joyce B. Molecular beam epitaxy[J]. Reports on Progress in Physics,1985,48:1637. doi: 10.1088/0034-4885/48/12/002
    [11]
    Dumcenco D, Ovchinnikov D, Marinov K, et al. Large-area epitaxial monolayer MoS2[J]. ACS Nano,2015,9:4611-4620. doi: 10.1021/acsnano.5b01281
    [12]
    Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials,2013,12:754. doi: 10.1038/nmat3673
    [13]
    Van Der Zande AM, Huang PY, Chenet DA, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials,2013,12:554. doi: 10.1038/nmat3633
    [14]
    Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature,2015,520:656. doi: 10.1038/nature14417
    [15]
    Wang D, Pan Z, Wu Z, et al. Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts[J]. Journal of Power Sources,2014,264:229-234. doi: 10.1016/j.jpowsour.2014.04.066
    [16]
    Novoselov KS, Fal'ko VI, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490:192-200. doi: 10.1038/nature11458
    [17]
    Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides[J]. Nature,2018,556:355-359. doi: 10.1038/s41586-018-0008-3
    [18]
    Jena D, Banerjee K, Xing GH. 2D crystal semiconductors: Intimate contacts[J]. Nature Materials,2014,13:1076. doi: 10.1038/nmat4121
    [19]
    Johnson D. Structure-property relationships in carbon fibres[J]. Journal of Physics D: Applied Physics,1987,20:286. doi: 10.1088/0022-3727/20/3/007
    [20]
    Dicks AL. The role of carbon in fuel cells[J]. Journal of Power Sources,2006,156:128-141. doi: 10.1016/j.jpowsour.2006.02.054
    [21]
    Lukowski MA, Daniel AS, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. J Am Chem Soc,2013,135:10274-10277. doi: 10.1021/ja404523s
    [22]
    Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J Am Chem Soc,2005,127:5308-5309. doi: 10.1021/ja0504690
    [23]
    Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science,2007,317:100-102. doi: 10.1126/science.1141483
    [24]
    Li H, Tsai C, Koh AL, Cai L, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nat Mater,2016,15:364.
    [25]
    Tsai C, Li H, Park S, et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution[J]. Nat Commun,2017,8:1-8. doi: 10.1038/s41467-016-0009-6
    [26]
    Yu Y, Li C, Liu Y, et al. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films[J]. Sci Rep,2013,3:1866. doi: 10.1038/srep01866
    [27]
    Ge W, Kawahara K, Tsuji M, et al. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD[J]. Nanoscale,2013,5:5773-5778. doi: 10.1039/c3nr00723e
    [28]
    Mark A. Lukowski ASD, Caroline RE, et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets[J]. Energy & Environmental Science,2014,7:2608-2613.
    [29]
    Russell AE. Preface[J]. Faraday Discuss,2009,140:9-10. doi: 10.1039/B814058H
    [30]
    Wu Z, Fang B, Bonakdarpour A, et al. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. Applied Catalysis B: Environmental,2012,125:59-66. doi: 10.1016/j.apcatb.2012.05.013
    [31]
    Chen JM, Wang CS. Second order Raman spectrum of MoS2[J]. Solid State Communications,1974,14:857-860. doi: 10.1016/0038-1098(74)90150-1
    [32]
    Berkdemir A, Gutiérrez HR, Botello-Méndez AR, et al. Identification of individual and few layers of WS2 using Raman spectroscopy[J]. Scientific Reports,2013:3.
    [33]
    McMullan WG, Irwin JC. Raman scattering from 2H and 3R-NbS2[J]. Solid State Communications,1983,45:557-560. doi: 10.1016/0038-1098(83)90426-X
    [34]
    Ward AT. Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures[J]. The Journal of Physical Chemistry C,1968:72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(545) PDF Downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return