Volume 36 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LI Xiao-yan, WANG Qiang, WANG Huan-wen. Conversion of carbon nanotubes into curved graphene with improved capacitance. New Carbon Mater., 2021, 36(4): 835-842. doi: 10.1016/S1872-5805(21)60086-0
Citation: LI Xiao-yan, WANG Qiang, WANG Huan-wen. Conversion of carbon nanotubes into curved graphene with improved capacitance. New Carbon Mater., 2021, 36(4): 835-842. doi: 10.1016/S1872-5805(21)60086-0

Conversion of carbon nanotubes into curved graphene with improved capacitance

doi: 10.1016/S1872-5805(21)60086-0
Funds:  The work was supported by the National Natural Science Foundation of China (21872162) and the CAS Key Laboratory of Carbon Materials (KLCMKFJJ2009)
More Information
  • Author Bio:

    李小燕,讲师. E-mail:xiaoyanli1975@163.com

  • Corresponding author: WANG Qiang, Associate Professor. E-mail: wqiang@sxicc.ac.cn
  • Received Date: 2021-06-17
  • Rev Recd Date: 2021-07-14
  • Available Online: 2021-07-22
  • Publish Date: 2021-08-01
  • Multi-wall carbon nanotubes (MWCNTs) have achieved mass production, but their lengths are in the millimeter range, which is unfavorable for the diffusion of electrolyte ions into their innermost tube. We report an oxidation method to simultaneously cut and unzip MWCNTs along transverse and longitudinal directions, which leads to the formation of curved graphene sheets (CGSs). SEM shows that the curved morphology was retained but the diameters were large after unzipping. This could be caused by the interaction of oxygen-containing functional groups between layers on the edges of the CGSs. Because of the larger number of active sites the specific capacitance is improved. To further increase the capacitive performance, a sample was put into a 0.1 mol L−1 KMnO4 to incorporate MnO2. The microstructure of the resulting CGS-MnO2 hybrid was revealed by electron microscopy, Raman spectroscopy and powder X-ray diffraction. The results indicate that amorphous MnO2 successfully grew on the surface of the CGSs. The capacitive behavior was measured by cyclic voltammetry in a 1 mol L−1 Na2SO4 solution. The CGS-MnO2 had a specific capacitance of 236 F g−1 at 2 mV s−1 (even 127 F g−1 at 100 mV s−1), which is superior to that of MWCNTs (15 F g−1), CGS (88 F g−1) and MWCNT-MnO2 (111 F g−1). In addition, excellent cycling performance was achieved for the CGS-MnO2 hybrid electrode with a 97% capacitance retention over 1000 cycles.
  • loading
  • [1]
    Miller J R, Outlaw R A, Holloway B C. Graphene double-layer capacitor with ac line-filtering performance[J]. Science,2010,329:1637-1639. doi: 10.1126/science.1194372
    [2]
    Stoller M D, Ruoff R S. Best practice methods for determining an electrode material's performance for ultracapacitors[J]. Energy & Environmetal Science,2010,3:1294-1301. doi: 10.1039/c0ee00074d
    [3]
    Wang H L, Casalongue H S, Liang Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society,2010,132:7472-7477. doi: 10.1021/ja102267j
    [4]
    Chen W, Rakhi R B, Hu L B, et al. High-performance nanostructured supercapacitors on a Sponge[J]. Nano Letters,2011,11:5165-5172. doi: 10.1021/nl2023433
    [5]
    Kim T Y, Lee H W, Stoller M, et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes[J]. ACS Nano,2011,5:436-442. doi: 10.1021/nn101968p
    [6]
    Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano Letters,2006,6:2690-2695. doi: 10.1021/nl061576a
    [7]
    Wang H, Xu D, Jia G, et al. Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate[J]. Energy Storage Materials,2020,25:114-123. doi: 10.1016/j.ensm.2019.10.024
    [8]
    Kang M, Zhou H, Wen P S, et al. Highly hierarchical porous ultrathin Co3O4 nanosheets@Ni foam for high-performance supercapacitors[J]. ACS Applied Energy Materials,2021,4:1619-1627. doi: 10.1021/acsaem.0c02815
    [9]
    Shimde N M, Xia Q X, Yun J M, et al. Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth[J]. ACS Applied Materials & Interfaces,2018,10:11037-11047. doi: 10.1021/acsami.8b00260
    [10]
    Sadak O, Wang W Z, Guan J H, et al. MnO2 nanoflowers deposited on graphene paper as electrode materials for supercapacitors[J]. ACS Applied Energy Materials,2021,2:4386-4394. doi: 10.1021/acsanm.9b00797
    [11]
    Patel M N, Wang X Q, Slanac D A, et al. High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates[J]. Journal of Materials Chemistry,2012,22:3160-3169. doi: 10.1039/c1jm14513d
    [12]
    Jiang H, Zhao T, Ma J, et al. Ultrafine manganese dioxidenanowire network for high-performance supercapacitors[J]. Chemical. Communications,2011,47:1264-1266. doi: 10.1039/C0CC04134C
    [13]
    Wei W, Huang X B, Tao Y M, et al. Enhancement of the electrocapacitive performance of manganese dioxide by introducing a microporous carbon spheres network[J]. Physical Chemistry Chemical Physics,2012,14:5966-5972. doi: 10.1039/c2cp23235a
    [14]
    Lee J W, Hall A S, Kim J D, et al. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Chemistry of Materials,2012,24:1158-1164. doi: 10.1021/cm203697w
    [15]
    Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38:2520-2531. doi: 10.1039/b813846j
    [16]
    Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,2009,458:877-880. doi: 10.1038/nature07919
    [17]
    Reddy A L M, Shaijumon M M, Gowda S R, et al. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries[J]. Nano Letters,2009,9:1002-1006. doi: 10.1021/nl803081j
    [18]
    Lee S W, Kim J Y, Chen S, et al. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors[J]. ACS Nano,2010,4:3889-3896. doi: 10.1021/nn100681d
    [19]
    Subramanian V, Zhu H W, Wei B Q. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials[J]. Electrochemistry Communications,2006,8:827-832. doi: 10.1016/j.elecom.2006.02.027
    [20]
    Saha M S, Kundu A. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode[J]. Journal of Power Sources,2010,195:6255-6261. doi: 10.1016/j.jpowsour.2010.04.015
    [21]
    Sun C L, Chang C T, Lee H H, et al. Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid[J]. ACS Nano,2011,5:7788-7795. doi: 10.1021/nn2015908
    [22]
    Rubio N, Fabbro C, Herrero M A, et al. Ball-milling modification of single-walled carbon nanotubes: purification, cutting, and functionalization[J]. Small,2011,7:665-674. doi: 10.1002/smll.201001917
    [23]
    Wu Z S, Wang D W, Ren W C, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Advanced Functional Materials,2010,20:3595-3602. doi: 10.1002/adfm.201001054
    [24]
    Fei R, Wang H, Wang Q, et al. In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials,2020,10:2002741. doi: 10.1002/aenm.202002741
    [25]
    Mao Z F, Wang R, He B B, et al. Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors[J]. Small,2019,15:1902466. doi: 10.1002/smll.201902466
    [26]
    Li Y Z, Tian L, Wang R, et al. Encapsulation of Fe3O4 between copper nanorod and thin TiO2 film by ALD for lithium-ion capacitors[J]. ACS Applied Materials & Interfaces,2019,11:19115-19122. doi: 10.1021/acsami.9b03454
    [27]
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80:1339. doi: 10.1021/ja01539a017
    [28]
    Wang H W, Yi H, Chen X, et al. One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2:1165-1173. doi: 10.1039/C3TA13932H
    [29]
    Mao Z F, Wang H W, Chao D L, et al. Al2O3-assisted confinement synthesis of oxide/carbon hollowcomposite nanofibers and application in metal-ion capacitors[J]. Small,2020,16:2001950. doi: 10.1002/smll.202001950
    [30]
    Gu Z, Peng H, Hauge R H, et al. Cutting single-wall carbon nanotubes through fluorination[J]. Nano Letters,2002,2:1009-1013. doi: 10.1021/nl025675+
    [31]
    Wang X X, Wang J N, Chang H, et al. Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries[J]. Advanced Functional Materials,2007,17:3613-3618. doi: 10.1002/adfm.200700319
    [32]
    Dimiev A M, Khannanov A, Vakhitovet I, et al. Revisiting the mechanism of oxidative unzipping of multiwall carbon nanotubes to graphene nanoribbons[J]. ACS Nano,2018,12:3985-3993. doi: 10.1021/acsnano.8b01617
    [33]
    Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons[J]. Journal of the American Chemical Society,2011,133:4168-4171. doi: 10.1021/ja1101739
    [34]
    Kosynkin D V, Lu W, Sinitskii A, et al. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor[J]. ACS Nano,2011,5:968-974. doi: 10.1021/nn102326c
    [35]
    Li Z P, Wang J Q, Liu S, et al. Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors[J]. Journal of Power Sources,2011,196:8160-8165. doi: 10.1016/j.jpowsour.2011.05.036
    [36]
    Jin X, Zhou W, Zhang S, et al. Nanoscale microelectrochemical cells on carbon nanotubes[J]. Small,2007,3:1513-1517. doi: 10.1002/smll.200700139
    [37]
    Szabo T, Tombacz E, Illes E, et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon,2006,44:537-545. doi: 10.1016/j.carbon.2005.08.005
    [38]
    Nethravathi C, Rajamathi J T, Ravishankar N, et al. Graphite oxide-intercalated anionic clay and its decomposition to graphene−inorganic material nanocomposites[J]. Langmuir,2008,24:8240-8244. doi: 10.1021/la8000027
    [39]
    Lee H, Kang J M, Cho M S, et al. MnO2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance[J]. Journal of Materials Chemistry,2011,21:18215-18219. doi: 10.1039/c1jm13364k
    [40]
    Gao J, Liu F, Liu Y, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chemistry of Materials,2010,22:2213-2218. doi: 10.1021/cm902635j
    [41]
    Julien C, Massot M, Baddour-Hadjean R, et al. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics,2003,159:345-356. doi: 10.1016/S0167-2738(03)00035-3
    [42]
    Ma S B, Ahn K Y, Lee E S, et al. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes[J]. Carbon,2007,45:375-382. doi: 10.1016/j.carbon.2006.09.006
    [43]
    Yan J, Fan Z J, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon,2010,48:3825-3833. doi: 10.1016/j.carbon.2010.06.047
    [44]
    Subramanian V, Zhu H W, Wei B Q. Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. J Power Sources,2006,159:361-364. doi: 10.1016/j.jpowsour.2006.04.012
    [45]
    Wang Y H, Zhitomirsky I. Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors[J]. Langmuir,2009,25:9684-9689. doi: 10.1021/la900937e
    [46]
    Shin D, Hwang H, Yeo T, et al. Sol-gel-driven combustion wave for scalable transformation of Mn(NO3)2 precursors into MnO2-x/MWCNT supercapacitor electrodes capable of electrochemical activation[J]. Carbon,2019,152:746-754. doi: 10.1016/j.carbon.2019.06.071
  • 支撑材料-李小燕-王强.docx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(5394) PDF Downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return