Volume 36 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
LU Le, DAI Wen, YU Jin-hong, JIANG Nan, LIN Cheng-te. A mini review: application of graphene paper in thermal interface materials. New Carbon Mater., 2021, 36(5): 930-939. doi: 10.1016/S1872-5805(21)60093-8
Citation: LU Le, DAI Wen, YU Jin-hong, JIANG Nan, LIN Cheng-te. A mini review: application of graphene paper in thermal interface materials. New Carbon Mater., 2021, 36(5): 930-939. doi: 10.1016/S1872-5805(21)60093-8

A mini review: application of graphene paper in thermal interface materials

doi: 10.1016/S1872-5805(21)60093-8
More Information
  • Author Bio:

    吕 乐,博士研究生. E-mail:lvle@nimte.ac.cn

  • Corresponding author: DAI Wen, Ph.D, Assistant research fellow. E-mail: daiwen@nimte.ac.cn; JIANG Nan, Ph.D, Professor. E-mail: jiangnan@nimte.ac.cn; LIN Cheng-te, Ph.D, Professor. E-mail: linzhengde@nimte.ac.cn
  • Received Date: 2020-07-28
  • Rev Recd Date: 2021-09-13
  • Available Online: 2021-09-30
  • Publish Date: 2021-10-01
  • Accumulated heat is the primary problem that needs to be solved in current electronic products. There is an urgent need for designing innovative high-performance thermal interface materials (TIMs) with excellent heat dissipation performance. Based on the development status of TIMs, graphene paper-based TIMs that are ultrathin thickness and have high through-plane thermal conductivity show great potential. From this perspective, we introduce four types of graphene paper (including graphene/polymer composite papers, graphene/metal composite papers, graphene/ceramic composite paper, and graphene/carbon composite paper) and vertically aligned graphene paper as TIMs. Based on the applications of these TIMs, their advantages and limitations are discussed. Finally further research prospects are proposed to promote the practical applications of graphene paper-based TIMs.
  • loading
  • [1]
    Suh D, Moon C M, Kim D, et al. Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits[J]. Advanced Materials,2016,28(33):7220-7227. doi: 10.1002/adma.201600642
    [2]
    Bhanushali S, Ghosh P C, Simon G P, et al. Copper nanowire-filled soft elastomer composites for applications as thermal interface materials[J]. Advanced Materials Interfaces,2017,4(17):1700387. doi: 10.1002/admi.201700387
    [3]
    Lv L, Dai W, Li A J, et al. Graphene-based thermal interface materials: an application-oriented perspective on architecture design[J]. Polymers,2018,10(11):1201. doi: 10.3390/polym10111201
    [4]
    Dai W, Ma T F, Yan Q W, et al. Metal-level thermally conductive yet soft graphene thermal interface materials[J]. ACS Nano,2019,13(10):11561-11571. doi: 10.1021/acsnano.9b05163
    [5]
    Hansson J, Nilsson T M J, Ye L L, et al. Novel nanostructured thermal interface materials: a review[J]. International Materials Reviews,2018,63(1):22-45. doi: 10.1080/09506608.2017.1301014
    [6]
    Razeeb K M, Dalton E, Cross G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Materials Reviews,2017,63(1):1-21. doi: 10.1080/09506608.2017.1296605
    [7]
    Tan X, Ying J F, Gao J Y, et al. Rational design of high-performance thermal interface materials based on gold-nanocap-modified vertically aligned graphene architecture[J]. Composites Communications,2021,24:100621. doi: 10.1016/j.coco.2020.100621
    [8]
    Prasher R. Thermal interface materials: historical perspective, status, and future directions[J]. Proceedings of the IEEE,2006,94(8):1571-1586. doi: 10.1109/JPROC.2006.879796
    [9]
    Shahil K M, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters,2012,12(2):861-867. doi: 10.1021/nl203906r
    [10]
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letter,2008,8(3):902-907. doi: 10.1021/nl0731872
    [11]
    Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29(27):1700589. doi: 10.1002/adma.201700589
    [12]
    Sun H Y, Li X M, Li Y C, et al. High-quality monolithic graphene films via laterally stitched growth and structural repair of isolated flakes for transparent electronics[J]. Chemistry of Materials,2017,29(18):7808-7815. doi: 10.1021/acs.chemmater.7b02348
    [13]
    Dai W, Lv L, Lu J B, et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods[J]. ACS Nano,2019,13(2):1547-1554. doi: 10.1021/acsnano.8b07337
    [14]
    Dai W, Lv L, Ma T F, et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management[J]. Advanced Science,2021,8(7):2003734. doi: 10.1002/advs.202003734
    [15]
    Hopkins P E, Baraket M, Barnat E V, et al. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization[J]. Nano Letters,2012,12(2):590-595. doi: 10.1021/nl203060j
    [16]
    Majumdar A, Reddy P. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces[J]. Applied Physics Letters,2004,84(23):4768-4770. doi: 10.1063/1.1758301
    [17]
    Teng C, Xie D, Wang J F, et al. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene[J]. Advanced Functional Materials,2017,27(20):1700240. doi: 10.1002/adfm.201700240
    [18]
    Zhang J W, Shi G, Jiang C, et al. 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader[J]. Small,2015,11(46):6109-6109. doi: 10.1002/smll.201570274
    [19]
    Fu Y, Hansson J, Liu Y, et al. Graphene related materials for thermal management[J]. 2D Materials,2020,7:012001. doi: 10.1088/2053-1583/ab48d9
    [20]
    Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials,2014,26(26):4521-4526. doi: 10.1002/adma.201400951
    [21]
    Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457-460. doi: 10.1038/nature06016
    [22]
    Song N J, Chen C M, Lu C, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Materials Chemistry A,2014,2(39):16563-16568. doi: 10.1039/C4TA02693D
    [23]
    Wallace G G, MB Müller, Dan L, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials,2010,20(18):3557-3561. doi: 10.1002/adma.200800757
    [24]
    Liu Z, Li Z, Xu Z, et al. Wet-spun continuous graphene films[J]. Chemistry of Materials,2014,26(23):6786-6795. doi: 10.1021/cm5033089
    [25]
    Li J, Ye F, Vaziri S, et al. Efficient inkjet printing of graphene[J]. Advanced Materials,2013,25(29):3985-3992. doi: 10.1002/adma.201300361
    [26]
    Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters,2008,8(1):323-327. doi: 10.1021/nl072838r
    [27]
    Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano,2008,2(3):463-470. doi: 10.1021/nn700375n
    [28]
    Rubén R, Juan I P, Silvia V R, et al. Towards full repair of defects in reduced graphene oxide films by two-step graphitization[J]. Nano Research,2013,6:216-233. doi: 10.1007/s12274-013-0298-6
    [29]
    Xiang J, Drzal L T. Electron and phonon transport in Au nanoparticle decorated graphene nanoplatelet nanostructured paper[J]. ACS Applied Materials & Interfaces,2011,3(4):1325-1332. doi: 10.1021/am200126x
    [30]
    Feng C P, Chen L B, Tian G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J]. ACS Applied Materials & Interfaces,2019,11(20):18739-18745. doi: 10.1021/acsami.9b03885
    [31]
    Jeon D, Kim S H, Choi W, et al. An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials[J]. International Journal of Heat and Mass Transfer,2019,132(4):944-951. doi: 10.1016/j.ijheatmasstransfer.2018.12.061
    [32]
    Wang Y, Zhang Z, Li T, et al. Artificial nacre epoxy nanomaterials based on janus graphene oxide for thermal management applications[J]. ACS Applied Materials & Interfaces,2020,12(39):44273-44280. doi: 10.1021/acsami.0c11062
    [33]
    Chen Y P, Xiao H, Kang R Y, et al. Highly flexible biodegradable cellulose nanofiber/graphene heat spreader films with improved mechanical property and enhanced thermal conductivity[J]. Journal of Materials Chemistry C,2018,6(46):12739-12745. doi: 10.1039/C8TC04859B
    [34]
    Huang S Y, Zhang K, Yuen M, et al. Facile synthesis of flexible graphene–silver composite papers with promising electrical and thermal conductivity performances[J]. Rsc Advances,2014,4(64):34156-34160. doi: 10.1039/C4RA05176A
    [35]
    Li Y, Li X, Alam M M et al. Incorporating Ag nanowires into graphene nanosheets for enhanced thermal conductivity: implications for thermal management[J]. ACS Applied Nano Materials,2020,3(6):6061-6070. doi: 10.1021/acsanm.0c01265
    [36]
    Lee E, Son I, Lee J H. Starfish surface-inspired graphene-copper metaparticles for ultrahigh vertical thermal conductivity of carbon fiber composite[J]. Composites Science and Technology,2020,199:108385. doi: 10.1016/j.compscitech.2020.108385
    [37]
    Hou X, Chen Y, Lv L, et al. High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets[J]. ACS Applied Nano Materials,2019,2(1):360-368. doi: 10.1021/acsanm.8b01939
    [38]
    Li M, Wang M J, Hou X, et al. Highly thermal conductive and electrical insulating polymer composites with boron nitride[J]. Composites Part B-Engineering,2020,184:107746. doi: 10.1016/j.compositesb.2020.107746
    [39]
    Dai W, Yu J H, Wang Y, et al. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler[J]. Journal of Materials Chemistry A,2015,3(9):4884-4891. doi: 10.1039/C4TA06417H
    [40]
    Chen Y P, Hou X, Liao M Z, et al. Constructing a "pea-pod-like" alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite[J]. Chemical Engineering Journal,2020,381:122690. doi: 10.1016/j.cej.2019.122690
    [41]
    Wu Y M, Ye K, Liu Z D, et al. Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces,2019,11(47):44700-44707. doi: 10.1021/acsami.9b15758
    [42]
    Wang Z G, Yang Y L, Lan R T, et al. Significantly enhanced thermal conductivity and flame retardance by silicon carbide nanowires/graphene oxide hybrid network[J]. Composites Part A: Applied Science and Manufacturing,2020,139:106093. doi: 10.1016/j.compositesa.2020.106093
    [43]
    Feng C P, Chen L B, Tian G L, et al. Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm−1K−1[J]. Chemical Engineering Journal,2020,392:123784. doi: 10.1016/j.cej.2019.123784
    [44]
    Nan B, Wu K, Qu Z, et al. A multifunctional thermal management paper based on functionalized graphene oxide nanosheets decorated with nanodiamond[J]. Carbon,2020,161:132-145. doi: 10.1016/j.carbon.2020.01.056
    [45]
    Kong Q Q, Liu Z, Gao J G, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanc ed Functional Materials,2014,24(27):4222-4228. doi: 10.1002/adfm.201304144
    [46]
    Zou R, Liu F, Hu N, et al. 1-Pyrenemethanol derived nanocrystal reinforced graphene films with high thermal conductivity and flexibility[J]. Nanotechnology,2020,31(6):065602. doi: 10.1088/1361-6528/ab51c5
    [47]
    Meng X, Pan H, Zhu C, et al. Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both in-plane and through-plane directions[J]. ACS Applied Materials & Interfaces,2018,10(26):22611-22622. doi: 10.1021/acsami.8b05514
    [48]
    Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3D network nanostructure for enhanced hydrogen storage[J]. Nano Letters,2008,8(10):3166-3170. doi: 10.1021/nl801417w
    [49]
    Zhang J, Shi G, Jiang C, et al. Carbon Nanorings: 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader[J]. Small,2015,11(46):6197-6204. doi: 10.1002/smll.201501878
    [50]
    Gao J Y, Yan Q W, Lv L, et al. Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity[J]. Chemical Engineering Journal,2021,419:129609. doi: 10.1016/j.cej.2021.129609
    [51]
    Liang Q, Yao X, Wang W, et al. A three-dimensional vertically aligned functionalized multilayer graphene architecture: An approach for graphene-based thermal interfacial materials[J]. ACS Nano,2011,5:2392-2401. doi: 10.1021/nn200181e
    [52]
    Zhang Y F, D Han, Zhao Y H, et al. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer[J]. Carbon,2016,109:552-557. doi: 10.1016/j.carbon.2016.08.051
    [53]
    Zhuang Y, Zheng K, Cao X, et al. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology[J]. ACS Nano,2020,14:11733-11742. doi: 10.1021/acsnano.0c04456
    [54]
    Song Q, Zhu W, Deng Y, et al. Enhanced thermal conductivity and mechanical property of flexible poly (vinylidene fluoride)/boron nitride/graphite nanoplatelets insulation films with high breakdown strength and reliability[J]. Composites Science and Technology,2018,168:381-387. doi: 10.1016/j.compscitech.2018.10.015
    [55]
    Li X, Li Y, Alam M M, et al. Enhanced through-plane thermal conductivity in polymer nanocomposites by constructing graphene-supported BN nanotubes[J]. Journal of Materials Chemistry C,2020,8(28):9569-9575. doi: 10.1039/D0TC01871F
    [56]
    Pan T-W, Kuo W-S, Tai N-H. Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films[J]. Composites Science and Technology,2017,151:44-51. doi: 10.1016/j.compscitech.2017.07.015
    [57]
    Lu H F, Zhang J, Luo J, et al. Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper[J]. Composites Part A: Applied Science and Manufacturing,2017,102:1-8. doi: 10.1016/j.compositesa.2017.07.021
    [58]
    Li Q, Tian X, Wu N, et al. Enhanced thermal conductivity and isotropy of polymer composites by fabricating 3D network structure from carbon‐based materials[J]. Journal of Applied Polymer Science,2020,138(5):49781. doi: 10.1002/app.49781
    [59]
    Macpool M, Guo H C, Bashir A, et al. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene-graphene interface[J]. Nano Research,2020,13(10):2741-2748. doi: 10.1007/s12274-020-2921-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(1191) PDF Downloads(184) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return