Volume 36 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
XIANG Yu-xin, SHEN Ke, WU Hao, HE Zhi-cheng, LI Xuan-ke. Preparation of fixed length carbon fiber reinforced plastic composite sheets with isotropic mechanical properties. New Carbon Mater., 2021, 36(6): 1188-1194. doi: 10.1016/S1872-5805(21)60094-X
Citation: XIANG Yu-xin, SHEN Ke, WU Hao, HE Zhi-cheng, LI Xuan-ke. Preparation of fixed length carbon fiber reinforced plastic composite sheets with isotropic mechanical properties. New Carbon Mater., 2021, 36(6): 1188-1194. doi: 10.1016/S1872-5805(21)60094-X

Preparation of fixed length carbon fiber reinforced plastic composite sheets with isotropic mechanical properties

doi: 10.1016/S1872-5805(21)60094-X
Funds:  National Natural Science Foundation of China (U1864207).
More Information
  • Corresponding author: LI Xuan-ke,Professor. E-mail: xkli8524@sina.com
  • Received Date: 2019-04-04
  • Rev Recd Date: 2019-07-24
  • Available Online: 2021-11-12
  • Publish Date: 2021-12-01
  • Molded carbon composite sheets with different fiber volume fractions were prepared by dispersing fixed length (30 mm) carbon fibers in a vinyl resin matrix, which was then made into a carbon fiber reinforced polymer (CFRP) composite sheet by vacuum hot-pressing. The influence of the volume fraction (15%–40% (vol.)) of the carbon fibers on the tensile and bend strengths, and the in-plane isotropic characteristics of mechanical properties of the composites were investigated. Results show that the tensile strength in different in-plane directions of the composites varied by only 2%-3% at a 25%-30% (vol.) fiber content, indicating that the carbon fibers are well dispersed in the resin, and composite sheets with these fiber volume fractions are isotropic in the plane. By increasing the carbon fiber volume fraction from 15% to 40%, the composites had a maximum tensile strength of 141.4 MPa at 25% fiber volume and a maximum bend strength of 549.0 MPa at 30% fiber volume, which are respectively 112.8% and 129.6% higher than the values at a fiber volume fraction of 15%.
  • loading
  • [1]
    罗瑞盈. 炭纤维复合材料 [M]. 北京: 化学工业出版社, 2017.

    LUO Rui-ying. Carbon Fiber Reinforced Composites[M]. Beijing: Chemical Industry Press, 2017.
    [2]
    堵同亮, 彭雄奇等. 炭纤维编织复合材料冲压成形实验与仿真分析[J]. 功能材料,2013,44(16):2401-2405. doi: 10.3969/j.issn.1001-9731.2013.16.025

    Du T L, Peng X Q, Guo Z Y, et al. Experimental and numerical stamping of carbon woven fabrics[J]. Journal of Functional Materials,2013,44(16):2401-2405. doi: 10.3969/j.issn.1001-9731.2013.16.025
    [3]
    沈观林, 胡更开. 复合材料力学 [M]. 北京: 清华大学出版社, 2006.

    SHEN Guan-lin, HU Geng-kai. Composite Mechanics[M]. Beijing: Tsinghua University Press, 2006.
    [4]
    Lomov S V, Belov E B, Bischoff T, et al. Carbon composites based on multiaxial multiply stitched preforms. Part 1. Geometry of the preform[J]. Composites Part A-Applied Science and Manufacturing,2002,33(9):1171-1183. doi: 10.1016/S1359-835X(02)00090-8
    [5]
    杨彩云, 李嘉禄. 三维机织复合材料力学性能的各向异性[J]. 复合材料学报,2006,23(2):59-64. doi: 10.3321/j.issn:1000-3851.2006.02.011

    Yang C Y, Li J L. Mechanical anisotropy of threedimensional woven composites[J]. Acta Materiae Compositae Sinica,2006,23(2):59-64. doi: 10.3321/j.issn:1000-3851.2006.02.011
    [6]
    Li D S, Nan J, Zhao C Q, et al. Experimental study on the tension fatigue behavior and failure mechanism of 3D multiaxial warp knitted composites[J]. Composites Part B-Engineering,2015,68:126-135. doi: 10.1016/j.compositesb.2014.08.042
    [7]
    高哲, 蒋高明, 马丕波. 炭纤维多轴向经编复合材料的应用与发展[J]. 纺织学报,2013,34(12):144-151.

    Gao Z, Jiang G M, Ma P B. Application and development of carbon fiber multi-axial warp-knitted fabric reinforced composites[J]. Journal of Textile Research,2013,34(12):144-151.
    [8]
    彭金涛, 任天斌. 炭纤维增强树脂基复合材料的最新应用现状[J]. 中国胶黏剂,2014,23(08):48-52.

    Peng J T, Reng T B. The latest application status ofcarbon fiber reinforced resin matrix composites[J]. China Adhesives,2014,23(08):48-52.
    [9]
    鲍宏琛, 刘广彦. 准各向同性纤维增强复合材料层合板的开孔拉伸破坏模拟[J]. 复合材料学报,2016,33(05):1026-1032.

    Bao H C, Liu G Y. Simulation on damage in quasi-isotropic fiber-reinforced composite laminates under open-hole tension[J]. Acta Materiea Compositae Sinica,2016,33(05):1026-1032.
    [10]
    夏瑜, 曾春梅, 郭培基. 主动成形准各向同性CFRP复合材料反射镜的铺层设计[J]. 红外与激光工程,2012,41(07):1885-1892. doi: 10.3969/j.issn.1007-2276.2012.07.036

    Xia Y, Zeng C M, Guo P J. Lay-up design of quasi-isotropic CFRP mirror for active forming[J]. Infrared and Laser Engineering,2012,41(07):1885-1892. doi: 10.3969/j.issn.1007-2276.2012.07.036
    [11]
    曹晚霞, 林兰天, 陈春敏, 等. 各向同性、各向异性材料冲击应力波传播特性研究[J]. 上海纺织科技,2017,45(04):5-9.

    Cao W X, Lin L T, Chen C M, et al. Characteristics of transmission of impact stress waves upon anisotropic or isotropic materials[J]. SHANGHAI Textile Science& Technology,2017,45(04):5-9.
    [12]
    张鸣. 各向同性树脂基多层复合材料吸波特性分析[D]. 黑龙江: 哈尔滨工程大学, 2011.

    ZHANG Ming. Absorbing characteristics of isotropic resin-based multilayer composite material[D]. Heilong Jiang: Harbin Engineering University, 2011.
    [13]
    Wulfsberg J, Herrmann A, Ziegmann G, et al. Combination of carbon fiber sheet moulding compound and prepreg compression moulding in aerospace industry[J]. Procedia Engineering,2014,81:1601-1607. doi: 10.1016/j.proeng.2014.10.197
    [14]
    江真. 短切炭纤维/乙烯基酯树脂片状模塑料拉伸性能分析 [D]. 黑龙江: 哈尔滨工业大学, 2018.

    JIANG Zhen. Tensile properties of chopped carbon fiber reinfor-ced vinyl ester resin sheet molding compound[D]. Heilong Jiang:Harbin Institute of Technology, 2018
    [15]
    王成忠, 于运花. 炭纤维/乙烯基酯树脂拉挤复合材料界面性能研究[J]. 复合材料学报,2003,20(5):68-72. doi: 10.3321/j.issn:1000-3851.2003.05.013

    Wang C Z, Yu Y H. Study on the interfacial properties of pultruded carbon fiber/vinyl ester resin composites[J]. Acta Materiea Compositae Sinica,2003,20(5):68-72. doi: 10.3321/j.issn:1000-3851.2003.05.013
    [16]
    刘玉婷, 姚婷婷. 氧化石墨烯/炭纤维复合增强体的制备及对环氧树脂复合材料界面性能影响[J]. 新型炭材料,2018,33(6):595-604.

    Liu Y T, Yao T T. Preparation of carbon fibers grafted to grapheme oxide as a reinforcement for epoxy matrix composites[J]. New Carbon Materials,2018,33(6):595-604.
    [17]
    中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites Determination of tensile properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005.
    [18]
    中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005.
    [19]
    邓富泉. 单向连续炭纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报,2018,35(1):103-109.

    Deng F Q. Mechanical properties of unidirectional carbon fiber-glass fiber hybrid reinforced epoxy composites in interlaminar layer[J]. Acta Materiea Compositae Sinica,2018,35(1):103-109.
    [20]
    Truong T C, Vettori M, Lomov S, et al. Carbon composites based on multi-axial multi-ply stitched preforms. Part 4. Mechanical properties of composites and damage observation[J]. Composites: Part A-Applied Science and Manufacturing,2005,36(2005):1207-1221.
    [21]
    De PJMF, Sergio M, Cerqueira R M. Comparison of tensile strength of different carbon fabric reinforced epoxy composites[J]. Materials Research,2006,9(1):83-89. doi: 10.1590/S1516-14392006000100016
    [22]
    Wu J, Zhang X X, Li Z, et al. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure[J]. Advanced Functional Materials,2020,30(40):2004348.
    [23]
    Zhang R B, Li Z H, Sun Q Y, et al. Design and characterization of the carbon fiber tube reinforced polymer composite for full ocean depth submersibles[J]. Composites Science and Technology,2022,217:109074. doi: 10.1016/j.compscitech.2021.109074
    [24]
    Mithil Kamble, Aniruddh Vashisth, et al. Reversing fatigue in carbon-fiber reinforced vitrimer composites[J]. Carbon,2022,187:108-114. doi: 10.1016/j.carbon.2021.10.078
    [25]
    Dong Z J, Sun B, Zhu H, et al. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Material,2021,36(5):873-896. doi: 10.1016/S1872-5805(21)60090-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(546) PDF Downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return