Volume 36 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
CHEN Yan-jun, CHENG Jun, SUN Shi-qi, WANG Yan-zhong, GUO Li. Coating a Na3V2(PO4)3 cathode material with carbon to improve its sodium storage. New Carbon Mater., 2021, 36(6): 1118-1127. doi: 10.1016/S1872-5805(21)60098-7
Citation: CHEN Yan-jun, CHENG Jun, SUN Shi-qi, WANG Yan-zhong, GUO Li. Coating a Na3V2(PO4)3 cathode material with carbon to improve its sodium storage. New Carbon Mater., 2021, 36(6): 1118-1127. doi: 10.1016/S1872-5805(21)60098-7

Coating a Na3V2(PO4)3 cathode material with carbon to improve its sodium storage

doi: 10.1016/S1872-5805(21)60098-7
More Information
  • Corresponding author: CHEN Yan-jun, Lecturer. E-mail: yjchen@nuc.edu.cn
  • Received Date: 2021-06-06
  • Rev Recd Date: 2021-07-28
  • Available Online: 2021-11-19
  • Publish Date: 2021-12-01
  • A sodium superionic conductor (NASICON)-type Na3V2(PO4)3 (NVP) with a 3D framework is a promising cathode material for sodium ion batteries. We used citric and oxalic acids as carbon sources to prepare carbon-coated NVP/C cathode materials by a sol-gel method. Their effect on the crystal structure, morphology and electrochemical performance of the coated NVP were investigated. Results indicate that compared with the NVP/C prepared from oxalic acid, NVP/C using citric acid as the carbon source has larger unit cell parameters of NVP, a smaller particle size, a thinner carbon coating layer, wider channels and shortened paths for Na+ migration, and superior kinetic characteristics. It had a high capacity of 112.3 mAh g−1 at 0.1 C and an excellent rate capability with reversible capacities of 90.0 and 89.1 mAh g−1 at 2 and 5 C, respectively. It also had an excellent cycling stability with capacity retention rates of nearly 100%, 92.7% and 90.0% after cycling 200 times at 1, 2 and 5 C, respectively. It is therefore a promising cathode material for practical use.
  • loading
  • [1]
    Kabbour H, Coillot D, Colmont M, et al. Alpha-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases[J]. Journal of American Chemical Society,2011,133:11900-11903. doi: 10.1021/ja204321y
    [2]
    Li D, Huang Y, Sharma N, et al. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction[J]. Physical Chemistry Chemical Physics,2012,14:3634-3639. doi: 10.1039/c2cp24062a
    [3]
    Yan J, Yuan W, Tang Z, et al. Synthesis and electrochemical performance of Li3V2(PO4)3−xClx/C cathode materials for lithium-ion batteries[J]. Journal of Power Sources,2012,209:251-256. doi: 10.1016/j.jpowsour.2012.02.110
    [4]
    Bin Y, Imran M, Akif Z, et al. Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid[J]. Catalysis Science & Technology,2016,00:4794-4801.
    [5]
    Lim S, Han D, Nam D, et al. Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:19623-19632. doi: 10.1039/C4TA03948C
    [6]
    Zhu C, Song K, Aken P, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Lett,2014,14:2175. doi: 10.1021/nl500548a
    [7]
    Chotard J, Rousse G, David R, et al. Discovery of a sodium-ordered form of Na3V2(PO4)3 below ambient temperature[J]. Chemistry of Materials,2015,27:5982-5987. doi: 10.1021/acs.chemmater.5b02092
    [8]
    Li H, Yu X, Bai Y, et al. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries[J]. Journal of Materials Chemistry A,2015,3:9578-9586. doi: 10.1039/C5TA00277J
    [9]
    Yang Z, Hu J, Chen Z, et al. Sol-gel-assisted, fast and low-temperature synthesis of La-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries[J]. RSC Advances,2015,5:17924-17930. doi: 10.1039/C4RA15880F
    [10]
    Hu P, Wang X, Wang T, et al. Boron substituted Na3V2(P1-43 cathode materials with enhanced performance for sodium-ion batteries[J]. Advanced Science,2016,3:1600112. doi: 10.1002/advs.201600112
    [11]
    Li H, Bai Y, Wu F, et al. Na-rich Na3+xV2-xNix(PO4)3/C for sodium ion batteries: Controlling the doping site and improving the electrochemical performances[J]. ACS Applied Materials & Interfaces,2016,8:27779-27787. doi: 10.1021/acsami.6b09898
    [12]
    Li H, Bi X, Bai Y, et al. High-rate, durable sodium-ion battery cathode enabled by carbon-coated micro-sized Na3V2(PO4)3 particles with interconnected vertical nanowalls[J]. Advanced Materials Interfaces,2016:3(9): 1500740.
    [13]
    Zhang Y, Zhao H, Du Y. Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage[J]. Journal of Materials Chemistry A,2016,4:7155-7159. doi: 10.1039/C6TA02218A
    [14]
    Aragon M, Lavela P, Ortiz G, et al. Induced rate performance enhancement in off-stoichiometric Na3+3xV2-x(PO4)3 with potential applicability as the cathode for sodium-ion batteries[J]. Chemistry,2017,23:7345-7352. doi: 10.1002/chem.201700716
    [15]
    Cao X, Mo L, Zhu L, et al. Preparation and electrochemical properties of Li(3)V(2)(PO(4))3-xBrx/carbon composites as cathode materials for lithium-ion batteries[J]. Nanomaterials,2017:7(3): 52-52(1).
    [16]
    Inoishi A, Omuta T, Kobayashi E, et al. A single-phase, all-solid-state sodium battery using Na3−xV2−xZrx(PO4)3 as the cathode, anode, and electrolyte[J]. Advanced Materials Interfaces,2017:4(5): 1600942.
    [17]
    Jiang Y, Zhang H, Yang H, et al. Na3V2(PO4)3@nitrogen, sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries[J]. Nanoscale,2017,9:6048-6055. doi: 10.1039/C7NR01280B
    [18]
    Yao Y, Jiang Y, Yang H, et al. Na3V2(PO4)3 coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries[J]. Nanoscale,2017,9:10880-10885. doi: 10.1039/C7NR03342G
    [19]
    Tian Z, Chen Y, Cheng J. Boosting the rate capability and working lifespan of K/Co co-doped Na3V2(PO4)3/C for sodium ion batteries[J]. Ceramics International,2021,47:22025-22034. doi: 10.1016/j.ceramint.2021.04.222
    [20]
    Li H, Wu C, Bai Y, et al. Controllable synthesis of high-rate and long cycle-life Na3V2(PO4)3 for sodium-ion batteries[J]. Journal of Power Sources,2016,326:14-22. doi: 10.1016/j.jpowsour.2016.06.096
    [21]
    Rajagopalan R, Zhang L, Dou S, et al. Tuned in situ growth of nanolayered rGO on 3D Na3V2(PO4)3 matrices: A step toward long lasting, high power Na-ion batteries[J]. Advanced Materials Interfaces,2016:3(13): 1600007.
    [22]
    Shen W, Li H, Guo Z, et al. Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries[J]. RSC Advances,2016,6:71581-71588. doi: 10.1039/C6RA16515J
    [23]
    Shen W, Li H, Guo Z, et al. Double-nanocarbon synergistically modified Na3V2(PO4)3: An advanced cathode for high-rate and long-life sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8:15341-15351. doi: 10.1021/acsami.6b03410
    [24]
    Tao S, Cui P, Huang W, et al. Sol-gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries[J]. Carbon,2016,96:1028-1033. doi: 10.1016/j.carbon.2015.10.054
    [25]
    Tao S, Wang X, Cui P, et al. Fabrication of graphene-encapsulated Na3V2(PO4)3 as high-performance cathode materials for sodium-ion batteries[J]. RSC Advances,2016,6:43591-43597. doi: 10.1039/C6RA04237F
    [26]
    Xu G, Sun G. Mg2+-doped Na3V2(PO4) 3 /C decorated with graphene sheets: An ultrafast Na-storage cathode for advanced energy storage[J]. Ceramics International,2016,42:14774-14781. doi: 10.1016/j.ceramint.2016.06.107
    [27]
    Xu Y, Wei Q, Xu C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode[J]. Advanced Energy Materials,2016:6(13): 1600389.
    [28]
    Kretschmer K, Sun B, Zhang J, et al. 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium-ion batteries[J]. Small,2017:13: 1603318.
    [29]
    Zhang D, Feng P, Xu B, et al. High rate performance of Na3V2−xCux(PO4)3/C cathodes for sodium ion batteries[J]. Journal of The Electrochemical Society,2017,164:A3563-A3569. doi: 10.1149/2.0381714jes
    [30]
    Huang Y, Li X, Wang J, et al. Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3[J]. Energy Storage Materials,2018,15:108-115. doi: 10.1016/j.ensm.2018.03.021
    [31]
    Ni Q, Bai Y, Li Y, et al. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries[J]. Small,2018,14:e1702864. doi: 10.1002/smll.201702864
    [32]
    Sun P, Wang Y, Wang X, et al. Off-stoichiometric Na3−3xV2+x(PO4)3/C nanocomposites as cathode materials for high-performance sodium-ion batteries prepared by high-energy ball milling[J]. RSC Advances,2018,8:20319-20326. doi: 10.1039/C8RA02843E
    [33]
    Xiao H, Huang X, Ren Y, et al. Enhanced sodium ion storage performance of Na3V2(PO4)3 with N-doped carbon by folic acid as carbon-nitrogen source[J]. Journal of Alloys and Compounds,2018,732:454-459. doi: 10.1016/j.jallcom.2017.10.195
    [34]
    Zeng Q, Luo L, Yu Z, et al. Ultrafine Na3V2(PO4)3@C nanoparticles embedded in boron-doped graphene as high-rate and long cycle-life cathode material for sodium-ion batteries[J]. Solid State Ionics,2018,323:92-96. doi: 10.1016/j.ssi.2018.05.023
    [35]
    Zhang B, Zeng T, Liu Y, et al. Effect of Ti-doping on the electrochemical performance of sodium vanadium(III) phosphate[J]. RSC Advances,2018,8:5523-5531. doi: 10.1039/C7RA12743J
    [36]
    Zhang J, Liu W, Hu H, et al. An advanced blackberry-shaped Na3V2(PO4)3 cathode: Assists in high-rate performance and long-life stability[J]. Electrochimica Acta,2018,292:736-741. doi: 10.1016/j.electacta.2018.10.007
    [37]
    Zhang L, Zhou Y, Li T, et al. Multi-heteroatom doped carbon coated Na3V2(PO4)3 derived from ionic liquids[J]. Dalton Transactions,2018,47:4259-4266. doi: 10.1039/C8DT00062J
    [38]
    Zhao L, Zhao H, Long X, et al. Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface[J]. ACS Applied Materials & Interfaces,2018,10:35963-35971. doi: 10.1021/acsami.8b12055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article Views(1299) PDF Downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return