Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
FENG You-you, CHEN Yi-qing, WANG Zheng, WEI Jing. Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications. New Carbon Mater., 2022, 37(1): 196-222. doi: 10.1016/S1872-5805(22)60577-8
Citation: FENG You-you, CHEN Yi-qing, WANG Zheng, WEI Jing. Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications. New Carbon Mater., 2022, 37(1): 196-222. doi: 10.1016/S1872-5805(22)60577-8

Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications

doi: 10.1016/S1872-5805(22)60577-8
Funds:  This work was financially supported by the National Natural Science Foundation of China (21701130), Key Research and Development Program of Shaanxi (2021GY-225) and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2020-KF-42)
More Information
  • Author Bio:

    冯尤优,博士研究生. E-mail:yoyo_feng1997@126.com

  • Corresponding author: WEI Jing, Professor. E-mail: jingwei@xjtu.edu.cn
  • Received Date: 2021-11-25
  • Rev Recd Date: 2021-12-17
  • Available Online: 2021-12-20
  • Publish Date: 2022-02-01
  • Mesoporous carbon materials have a high specific surface area, tunable surface chemistry and pore structure, and good chemical stability and conductivity. They have attracted great attention for use in environmental remediation, industrial catalysis, energy conversion and storage. The carbon precursor is important for the synthesis of mesoporous carbons with different properties. Plant polyphenols are a kind of universal biomass with low cost, nontoxicity and sustainability that can be used as a carbon source. Most importantly, their good adhesion and metal chelating ability make them suitable for the synthesis of mesoporous carbon composites. Methods for the synthesis of different forms of mesoporous carbon from plant polyphenols are provided, including porous carbon foams, ordered mesoporous carbons, mesoporous carbon spheres, heteroatom-doped mesoporous carbons, and composites of mesoporous carbon with metals. Their uses in environmental and energy studies are summarized.
  • loading
  • [1]
    Li X H, Antonietti M. Metal nanoparticles at mesoporous n-doped carbons and carbon nitrides: Functional mott-schottky heterojunctions for catalysis[J]. Chemical Society Reviews,2013,42(16):6593-6604. doi: 10.1039/c3cs60067j
    [2]
    Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews,2013,42(9):3977-4003. doi: 10.1039/C2CS35301F
    [3]
    Deng Y H, Wei J, Sun Z K, et al. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers[J]. Chemical Society Reviews,2013,42(9):4054-4070. doi: 10.1039/C2CS35426H
    [4]
    Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials,2016,1(6):16023. doi: 10.1038/natrevmats.2016.23
    [5]
    Liu J, Qiao S Z, Hu Q H, et al. Magnetic nanocomposites with mesoporous structures: Synthesis and applications[J]. Small,2011,7(4):425-443. doi: 10.1002/smll.201001402
    [6]
    Zhou Z, Hartmann M. Progress in enzyme immobilization in ordered mesoporous materials and related applications[J]. Chemical Society Reviews,2013,42(9):3894-3912. doi: 10.1039/c3cs60059a
    [7]
    Chen Q, Tan X F, Liu Y G, et al. Biomass-derived porous graphitic carbon materials for energy and environmental applications[J]. Journal of Materials Chemistry A,2020,8(12):5773-5811. doi: 10.1039/C9TA11618D
    [8]
    Li C, Li Q, Kaneti Y V, et al. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems[J]. Chemical Society Reviews,2020,49(14):4681-4736. doi: 10.1039/D0CS00021C
    [9]
    Wang H, Shao Y, Mei S L, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120(17):9363-9419. doi: 10.1021/acs.chemrev.0c00080
    [10]
    Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [11]
    Hu B, Wang K, Wu L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advvanced Materials,2010,22(7):813-828. doi: 10.1002/adma.200902812
    [12]
    Braghiroli F L, Fierro V, Szczurek A, et al. Hydrothermal treatment of tannin: A route to porous metal oxides and metal/carbon hybrid materials[J]. Inorganics,2017,5(1):7. doi: 10.3390/inorganics5010007
    [13]
    Roberts A D, Li X, Zhang H F. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chemical Society Reviews,2014,43(13):4341-4356. doi: 10.1039/C4CS00071D
    [14]
    Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials,2006,18(16):2073-2094. doi: 10.1002/adma.200501576
    [15]
    Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412(6843):169-172. doi: 10.1038/35084046
    [16]
    Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. Journal of Physical Chemistry B,1999,103(37):7743-7746. doi: 10.1021/jp991673a
    [17]
    Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angewandte Chemie-International Edition,2008,47(20):3696-3717. doi: 10.1002/anie.200702046
    [18]
    Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie-International Edition,2004,43(43):5785-5789. doi: 10.1002/anie.200461051
    [19]
    Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie-International Edition,2005,44(43):7053-7059. doi: 10.1002/anie.200501561
    [20]
    Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia $ \stackrel{-}{3} $d bicontinuous cubic structure[J]. Journal of the American Chemical Society,2005,127(39):13508-13509. doi: 10.1021/ja0545721
    [21]
    Wei J, Zhou D D, Sun Z K, et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors[J]. Advanced Functional Materials,2013,23(18):2322-2328. doi: 10.1002/adfm.201202764
    [22]
    Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019,31(11):1804903. doi: 10.1002/adma.201804903
    [23]
    Yu L, Wu H B, Lou X W D. Self-templated formation of hollow structures for electrochemical energy applications[J]. Accounts of Chemical Research,2017,50(2):293-301. doi: 10.1021/acs.accounts.6b00480
    [24]
    Yu Y F, Shi Y M, Zhang B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting[J]. Accounts of Chemical Research,2018,51(7):1711-1721. doi: 10.1021/acs.accounts.8b00193
    [25]
    Li W, Zhang F, Dou Y Q, et al. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes[J]. Advanced Energy Materials,2011,1(3):382-386. doi: 10.1002/aenm.201000096
    [26]
    Dang S, Zhu Q L, Xu Q. Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials,2018,3(1):17075. doi: 10.1038/natrevmats.2017.75
    [27]
    Wang C H, Kim J H, Tang J, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures[J]. Chem,2020,6(1):19-40. doi: 10.1016/j.chempr.2019.09.005
    [28]
    Deng J, Li M M, Wang Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion[J]. Green Chemistry,2016,18(18):4824-4854. doi: 10.1039/C6GC01172A
    [29]
    Matsagar B M, Yang R X, Dutta S, et al. Recent progress in the development of biomass-derived nitrogen-doped porous carbon[J]. Journal of Materials Chemistry A,2021,9(7):3703-3728. doi: 10.1039/D0TA09706C
    [30]
    Singh G, Lakhi K S, Sil S, et al. Biomass derived porous carbon for CO2 capture[J]. Carbon,2019,148:164-186. doi: 10.1016/j.carbon.2019.03.050
    [31]
    Han Y Y, Lin Z X, Zhou J J, et al. Polyphenol-mediated assembly of proteins for engineering functional materials[J]. Angewandte Chemie-International Edition,2020,59(36):15618-15625. doi: 10.1002/anie.202002089
    [32]
    Quideau S, Deffieux D, Douat-Casassus C, et al. Plant polyphenols: Chemical properties, biological activities, and synthesis[J]. Angewandte Chemie-International Edition,2011,50(3):586-621. doi: 10.1002/anie.201000044
    [33]
    Fang Y, Gu D, Zou Y, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie-International Edition,2010,49(43):7987-7991. doi: 10.1002/anie.201002849
    [34]
    Liu J, Qiao S Z, Liu H, et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie-International Edition,2011,50(26):5947-5951. doi: 10.1002/anie.201102011
    [35]
    Liu J, Yang T Y, Wang D W, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications,2013,4:2798. doi: 10.1038/ncomms3798
    [36]
    Rahim M A, Kristufek S L, Pan S J, et al. Phenolic building blocks for the assembly of functional materials[J]. Angewandte Chemie-International Edition,2019,58(7):1904-1927. doi: 10.1002/anie.201807804
    [37]
    Wei J, Liang Y, Hu Y X, et al. A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction[J]. Angewandte Chemie-International Edition,2016,55(4):1355-1359. doi: 10.1002/anie.201509024
    [38]
    Wei J, Liang Y, Hu Y X, et al. Hydrothermal synthesis of metal-polyphenol coordination crystals and their derived metal/N-doped carbon composites for oxygen electrocatalysis[J]. Angewandte Chemie-International Edition,2016,55(40):12470-12474. doi: 10.1002/anie.201606327
    [39]
    Wei J, Wang G, Chen F, et al. Sol-gel synthesis of metal-phenolic coordination spheres and their derived carbon composites[J]. Angewandte Chemie-International Edition,2018,57(31):9838-9843. doi: 10.1002/anie.201805781
    [40]
    Zhang P F, Wang L, Yang S Z, et al. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking[J]. Nature Communications,2017,8:15020. doi: 10.1038/ncomms15020
    [41]
    Yang S J, Antonietti M, Fechler N. Self-assembly of metal phenolic mesocrystals and morphosynthetic transformation toward hierarchically porous carbons[J]. Journal of the American Chemical Society,2015,137(25):8269-8673. doi: 10.1021/jacs.5b04500
    [42]
    Wei X, Zheng D, Zhao M, et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2020,59(34):14639-14646. doi: 10.1002/anie.202006175
    [43]
    Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [44]
    Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications[J]. Energy & Environmental Science,2014,7(11):3574-3592.
    [45]
    Liu Z H, Du Y, Zhang P F, et al. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon[J]. Matter,2021,4(10):3161-3194. doi: 10.1016/j.matt.2021.07.019
    [46]
    Zhang J, Zhang N, Tack F M G, et al. Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review[J]. Journal of Hazardous Materials,2021,418:126266. doi: 10.1016/j.jhazmat.2021.126266
    [47]
    Peter C, Derible A, Becht J M, et al. Biosourced mesoporous carbon with embedded palladium nanoparticles by a one pot soft-template synthesis: Application to suzuki reactions[J]. Journal of Materials Chemistry A,2015,3(23):12297-12306. doi: 10.1039/C4TA06478J
    [48]
    Zhang P F, Chen N Q, Chen D, et al. Ultra-stable and high-cobalt-loaded cobalt@ordered mesoporous carbon catalysts: All-in-one deoxygenation of ketone into alkylbenzene[J]. ChemCatChem,2018,10(15):3299-3304. doi: 10.1002/cctc.201800358
    [49]
    Yao Y J, Yu M J, Yin H Y, et al. Tannic acid-Fe coordination derived Fe/N-doped carbon hybrids for catalytic oxidation processes[J]. Applied Surface Science,2019,489:44-54. doi: 10.1016/j.apsusc.2019.05.275
    [50]
    Nelson K M, Mahurin S M, Mayes R T, et al. Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors[J]. Microporous and Mesoporous Materials,2016,222:94-103. doi: 10.1016/j.micromeso.2015.09.050
    [51]
    Phuriragpitikhon J, Ghimire P, Jaroniec M. Tannin-derived micro-mesoporous carbons prepared by one-step activation with potassium oxalate and CO2[J]. Journal of Colloid and Interface Science,2020,558:55-67. doi: 10.1016/j.jcis.2019.09.071
    [52]
    Zhao J H, Shan W D, Zhang P F, et al. Solvent-free and mechanochemical synthesis of N-doped mesoporous carbon from tannin and related gas sorption property[J]. Chemical Engineering Journal,2020,381:122579. doi: 10.1016/j.cej.2019.122579
    [53]
    Wang G, Gao G, Yang S J, et al. Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal[J]. Microporous and Mesoporous Materials,2021,310:110623. doi: 10.1016/j.micromeso.2020.110623
    [54]
    Nasini U B, Bairi V G, Ramasahayam S K, et al. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application[J]. Journal of Power Sources,2014,250:257-265. doi: 10.1016/j.jpowsour.2013.11.014
    [55]
    Ramasahayam S K, Nasini U B, Shaikh A U, et al. Novel tannin-based Si, P co-doped carbon for supercapacitor applications[J]. Journal of Power Sources,2015,275:835-844. doi: 10.1016/j.jpowsour.2014.11.020
    [56]
    Braghiroli F L, Fierro V, Szczurek A, et al. Hydrothermally treated aminated tannin as precursor of N-doped carbon gels for supercapacitors[J]. Carbon,2015,90:63-74. doi: 10.1016/j.carbon.2015.03.038
    [57]
    Sanchez-Sanchez A, Izquierdo M T, Mathieu S, et al. Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin[J]. Green Chemistry,2017,19(11):2653-2665. doi: 10.1039/C7GC00491E
    [58]
    Sanchez-Sanchez A, Izquierdo M T, Ghanbaja J, et al. Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes[J]. Journal of Power Sources,2017,344:15-24. doi: 10.1016/j.jpowsour.2017.01.099
    [59]
    Castro-Gutiérrez J, Sanchez-Sanchez A, Ghanbaja J, et al. Synthesis of perfectly ordered mesoporous carbons by water-assisted mechanochemical self-assembly of tannin[J]. Green Chemistry,2018,20(22):5123-5132. doi: 10.1039/C8GC02295J
    [60]
    Sanchez-Sanchez A, Izquierdo M T, Medjahdi G, et al. Ordered mesoporous carbons obtained by soft-templating of tannin in mild conditions[J]. Microporous and Mesoporous Materials,2018,270:127-139. doi: 10.1016/j.micromeso.2018.05.017
    [61]
    Castro-Gutiérrez J, Díez N, Sevilla M, et al. High-rate capability of supercapacitors based on tannin-derived ordered mesoporous carbons[J]. ACS Sustainable Chemistry & Engineering,2019,7(21):17627-17635.
    [62]
    Wang G, Qin J, Zhao Y X, et al. Nanoporous carbon spheres derived from metal-phenolic coordination polymers for supercapacitor and biosensor[J]. Journal of Colloid and Interface Science,2019,544:241-248. doi: 10.1016/j.jcis.2019.03.001
    [63]
    El Mohajir A, Castro-Gutiérrez J, Canevesi R L S, et al. Novel porous carbon material for the detection of traces of volatile organic compounds in indoor air[J]. ACS Applied Materials & Interfaces,2021,13(33):40088-40097.
    [64]
    Kraiwattanawong K, Mukai S R, Tamon H, et al. Preparation of carbon cryogels from wattle tannin and furfural[J]. Microporous and Mesoporous Materials,2007,98(1-3):258-266. doi: 10.1016/j.micromeso.2006.09.007
    [65]
    Jana P, Fierro V, Pizzi A, et al. Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers[J]. Materials & Design,2015,83:635-643.
    [66]
    Perez-Rodriguez S, Pinto O, Izquierdo M T, et al. Upgrading of pine tannin biochars as electrochemical capacitor electrodes[J]. Journal of Colloid and Interface Science,2021,601:863-876. doi: 10.1016/j.jcis.2021.05.162
    [67]
    Sanchez-Sanchez A, Braghiroli F L, Izquierdo M T, et al. Synthesis and properties of carbon microspheres based on tannin-sucrose mixtures treated in hydrothermal conditions[J]. Industrial Crops and Products,2020,154:112564. doi: 10.1016/j.indcrop.2020.112564
    [68]
    Rey-Raap N, Szczurek A, Fierro V, et al. Advances in tailoring the porosity of tannin-based carbon xerogels[J]. Industrial Crops and Products,2016,82:100-106. doi: 10.1016/j.indcrop.2015.12.001
    [69]
    Braghiroli F L, Fierro V, Szczurek A, et al. Electrochemical performances of hydrothermal tannin-based carbons doped with nitrogen[J]. Industrial Crops and Products,2015,70:332-340. doi: 10.1016/j.indcrop.2015.03.046
    [70]
    Braghiroli F L, Fierro V, Parmentier J, et al. Hydrothermal carbons produced from tannin by modification of the reaction medium: Addition of H+ and Ag+[J]. Industrial Crops and Products,2015,77:364-374. doi: 10.1016/j.indcrop.2015.09.010
    [71]
    Braghiroli F L, Fierro V, Izquierdo M T, et al. High surface - highly N-doped carbons from hydrothermally treated tannin[J]. Industrial Crops and Products,2015,66:282-290. doi: 10.1016/j.indcrop.2014.11.022
    [72]
    Braghiroli F L, Fierro V, Parmentier J, et al. Easy and eco-friendly synthesis of ordered mesoporous carbons by self-assembly of tannin with a block copolymer[J]. Green Chemistry,2016,18(11):3265-3271. doi: 10.1039/C5GC02788H
    [73]
    Amaral-Labat G, Grishechko L, Szczurek A, et al. Highly mesoporous organic aerogels derived from soy and tannin[J]. Green Chemistry,2012,14(11):3099-3106. doi: 10.1039/c2gc36263e
    [74]
    Schlienger S, Graff A-L, Celzard A, et al. Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor[J]. Green Chemistry,2012,14(2):313-316. doi: 10.1039/C2GC16160E
    [75]
    Szczurek A, Fierro V, Pizzi A, et al. Carbon meringues derived from flavonoid tannins[J]. Carbon,2013,65:214-227. doi: 10.1016/j.carbon.2013.08.017
    [76]
    Szczurek A, Fierro V, Pizzi A, et al. Emulsion-templated porous carbon monoliths derived from tannins[J]. Carbon,2014,74:352-362. doi: 10.1016/j.carbon.2014.03.047
    [77]
    Castro-Gutiérrez J, Jardim E D, Canevesi R L S, et al. Molecular sieving of linear and branched C6 alkanes by tannin-derived carbons[J]. Carbon,2021,174:413-422. doi: 10.1016/j.carbon.2020.12.061
    [78]
    Braghiroli F L, Fierro V, Izquierdo M T, et al. Nitrogen-doped carbon materials produced from hydrothermally treated tannin[J]. Carbon,2012,50(15):5411-5420. doi: 10.1016/j.carbon.2012.07.027
    [79]
    Canevesi R L S, Sanchez-Sanchez A, Gadonneix P, et al. Hierarchical tannin-derived carbons as efficient tetracycline adsorbents[J]. Applied Surface Science,2020,533:147428. doi: 10.1016/j.apsusc.2020.147428
    [80]
    Seredych M, Szczurek A, Fierro V, et al. Electrochemical reduction of oxygen on hydrophobic ultramicroporous polyhipe carbon[J]. ACS Catalysis,2016,6(8):5618-5628. doi: 10.1021/acscatal.6b01497
    [81]
    Wang G, Yang S J, Cao L, et al. Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing[J]. Coordination Chemistry Reviews,2021,445:214086. doi: 10.1016/j.ccr.2021.214086
    [82]
    Wei J, Sun Z K, Luo W, et al. New insight into the synthesis of large-pore ordered mesoporous materials[J]. Journal of the American Chemical Society,2017,139(5):1706-1713. doi: 10.1021/jacs.6b11411
    [83]
    Tondi G, Fierro V, Pizzi A, et al. Tannin-based carbon foams[J]. Carbon,2009,47(6):1480-1492. doi: 10.1016/j.carbon.2009.01.041
    [84]
    Celzard A, Tondi G, Lacroix D, et al. Radiative properties of tannin-based, glasslike, carbon foams[J]. Carbon,2012,50(11):4102-4113. doi: 10.1016/j.carbon.2012.04.058
    [85]
    Jana P, Fierro V, Pizzi A, et al. Biomass-derived, thermally conducting, carbon foams for seasonal thermal storage[J]. Biomass & Bioenergy,2014,67:312-318.
    [86]
    Letellier M, Macutkevic J, Paddubskaya A, et al. Microwave dielectric properties of tannin-based carbon foams[J]. Ferroelectrics,2015,479(1):119-126. doi: 10.1080/00150193.2015.1012036
    [87]
    Li X, Basso M C, Braghiroli F L, et al. Tailoring the structure of cellular vitreous carbon foams[J]. Carbon,2012,50(5):2026-2036. doi: 10.1016/j.carbon.2012.01.004
    [88]
    Grishechko L I, Amaral-Labat G, Fierro V, et al. Biosourced, highly porous, carbon xerogel microspheres[J]. RSC Advances,2016,6(70):65698-65708. doi: 10.1039/C6RA09462G
    [89]
    Kraiwattanawong K, Mukai S R, Tamon H, et al. Control of mesoporous properties of carbon cryogels prepared from wattle tannin and furfural[J]. Journal of Porous Materials,2007,15(6):695-703.
    [90]
    Arenillas A, Angel Menendez J, Reichenauer G, et al. Organic and Carbon Gels Derived from Biosourced Polyphenols [M]. In: Organic and Carbon Gels. Springer, Cham. 2019: 27-85.
    [91]
    Amaral-Labat G, Szczurek A, Fierro V, et al. Pore structure and electrochemical performances of tannin-based carbon cryogels[J]. Biomass & Bioenergy,2012,39:274-282.
    [92]
    Szczurek A, Amaral-Labat G, Fierro V, et al. The use of tannin to prepare carbon gels. Part i: Carbon aerogels[J]. Carbon,2011,49(8):2773-2784. doi: 10.1016/j.carbon.2011.03.007
    [93]
    Szczurek A, Amaral-Labat G, Fierro V, et al. The use of tannin to prepare carbon gels. Part ii. Carbon cryogels[J]. Carbon,2011,49(8):2785-2794. doi: 10.1016/j.carbon.2011.03.005
    [94]
    Szczurek A, Amaral-Labat G, Fierro V, et al. New families of carbon gels based on natural resources [C]. Journal of Physics Conference Series, 2013, 416: 012022.
    [95]
    Wei J, Hu Y X, Liang Y, et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction[J]. Advanced Functional Materials,2015,25(36):5768-5777. doi: 10.1002/adfm.201502311
    [96]
    Wang L, Zhao J H, Zhang P F, et al. Mechanochemical synthesis of ruthenium cluster@ordered mesoporous carbon catalysts by synergetic dual templates[J]. Chemistry,2019,25(36):8494-8498. doi: 10.1002/chem.201901714
    [97]
    Fang Y, Lv Y Y, Che R C, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage[J]. Journal of the American Chemical Society,2013,135(4):1524-1530. doi: 10.1021/ja310849c
    [98]
    Fang Y, Lv Y Y, Gong F, et al. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres[J]. Journal of the American Chemical Society,2015,137(8):2808-2811. doi: 10.1021/jacs.5b01522
    [99]
    Fang Y, Lv Y Y, Tang J, et al. Growth of single-layered two-dimensional mesoporous polymer/carbon films by self-assembly of monomicelles at the interfaces of various substrates[J]. Angewandte Chemie-International Edition,2015,54(29):8425-8429. doi: 10.1002/anie.201502845
    [100]
    Gu D, Bongard H, Deng Y H, et al. An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites[J]. Advanced Materials,2010,22(7):833-837. doi: 10.1002/adma.200902550
    [101]
    Zhang P F, Qiao Z A, Dai S. Recent advances in carbon nanospheres: Synthetic routes and applications[J]. Chemical Communication,2015,51(45):9246-9256. doi: 10.1039/C5CC01759A
    [102]
    Du J, Liu L, Hu Z P, et al. Order mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy[J]. Advanced Functional Materials,2018,28(33):1802332. doi: 10.1002/adfm.201802332
    [103]
    Du J, Liu L, Yu Y F, et al. Confined pyrolysis for direct conversion of solid resin spheres into yolk-shell carbon spheres for supercapacitor[J]. Journal of Materials Chemistry A,2019,7(3):1038-1044. doi: 10.1039/C8TA10266J
    [104]
    Ai K L, Liu Y L, Ruan C P, et al. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts[J]. Advanced Materials,2013,25(7):998-1003. doi: 10.1002/adma.201203923
    [105]
    Ejima H, Richardson J J, Caruso F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces[J]. Nano Today,2017,12:136-148. doi: 10.1016/j.nantod.2016.12.012
    [106]
    Rahim M A, Bjornmalm M, Bertleff-Zieschang N, et al. Multiligand metal-phenolic assembly from green tea infusions[J]. ACS Applied Materials & Interfaces,2018,10(9):7632-7639.
    [107]
    Ejima H, Richardson J J, Liang K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science,2013,341(6142):154-157. doi: 10.1126/science.1237265
    [108]
    Guo J L, Ping Y, Ejima H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks[J]. Angewandte Chemie-International Edition,2014,53(22):5546-5551. doi: 10.1002/anie.201311136
    [109]
    Hao L, Liu W H, Wang C, et al. Novel porous Fe3O4@C nanocomposite from magnetic metal-phenolic networks for the extraction of chlorophenols from environmental samples[J]. Talanta,2019,194:673-679. doi: 10.1016/j.talanta.2018.10.096
    [110]
    Li H, Du K, Xiang C S, et al. Controlled chelation between tannic acid and Fe precursors to obtain N, S co-doped carbon with high density Fe-single atom-nanoclusters for highly efficient oxygen reduction reaction in Zn-air batteries[J]. Journal of Materials Chemistry A,2020,8(33):17136-17149. doi: 10.1039/D0TA04210B
    [111]
    Wu Z X, Zhao D Y. Ordered mesoporous materials as adsorbents[J]. Chemical Communications,2011,47(12):3332-3338. doi: 10.1039/c0cc04909c
    [112]
    Borghei M, Lehtonen J, Liu L, et al. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction[J]. Advanced Materials,2018,30(24):1703691. doi: 10.1002/adma.201703691
    [113]
    Bairi V G, Nasini U B, Ramasahayam S K, et al. Electrocatalytic and supercapacitor performance of phosphorous and nitrogen co-doped porous carbons synthesized from aminated tannins[J]. Electrochimica Acta,2015,182:987-994. doi: 10.1016/j.electacta.2015.10.011
    [114]
    Peter C, Derible A, Parmentier J, et al. A green direct preparation of a magnetic ordered mesoporous carbon catalyst containing Fe-Pd alloys: Application to Suzuki-Miyaura reactions in propane-1, 2-diol[J]. New Journal of Chemistry,2017,41(12):4931-4936. doi: 10.1039/C7NJ00030H
    [115]
    Wang G, An W D, Zhang Y, et al. Mesoporous carbon framework supported cu-fe oxides as efficient peroxymonosulfate catalyst for sustained water remediation[J]. Chemical Engineering Journal,2022,430:133060. doi: 10.1016/j.cej.2021.133060
    [116]
    Wang J, Nie P, Ding B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A,2017,5(6):2411-2428. doi: 10.1039/C6TA08742F
    [117]
    Castro-Gutiérrez J, Celzard A, Fierro V. Energy storage in supercapacitors: Focus on tannin-derived carbon electrodes[J]. Frontiers in Materials,2020,7:217. doi: 10.3389/fmats.2020.00217
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article Metrics

    Article Views(1829) PDF Downloads(224) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return