Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
QI Zhi-yan, DAI Li-qin, WANG Zhe-fan, XIE Li-jing, CHEN Jing-peng, CHENG Jia-yao, SONG Ge, LI Xiao-ming, SUN Guo-hua, CHEN Cheng-meng. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery. New Carbon Mater., 2022, 37(1): 245-258. doi: 10.1016/S1872-5805(22)60580-8
Citation: QI Zhi-yan, DAI Li-qin, WANG Zhe-fan, XIE Li-jing, CHEN Jing-peng, CHENG Jia-yao, SONG Ge, LI Xiao-ming, SUN Guo-hua, CHEN Cheng-meng. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery. New Carbon Mater., 2022, 37(1): 245-258. doi: 10.1016/S1872-5805(22)60580-8

Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery

doi: 10.1016/S1872-5805(22)60580-8
Funds:  All authors appreciate the financial support of Research and Development Project of Key Core and Common Technology of Shanxi Province (2020XXX014), National Key Research and Development (R&D) Program of China (2020YFB1505800)
More Information
  • Author Bio:

    齐志燕,硕士. E-mail:qizy1025@163.com

  • Corresponding author: CHEN Cheng-meng. E-mail: ccm@sxicc.ac.cn
  • Received Date: 2021-12-04
  • Rev Recd Date: 2021-12-21
  • Available Online: 2021-12-21
  • Publish Date: 2022-02-01
  • Ordered and disordered carbons have been commonly used as coating materials for silicon (Si) anodes, however the effect of carbons with different crystallinities and pore structures on their electrochemical performance remains controversial. We used pitch and phenolic resin (PR) as the precursors of ordered and disordered carbon, respectively, to prepare carbon-coated silicon (Si@C) with strictly controlled carbon contents and surface functional groups. Their electrochemical behavior was investigated. An ordered crystalline structure is favorable for electron transport, and mesopores and macropores are conducive to the diffusion of lithium ions. Such a coating with a small pore volume is an excellent buffer for the expansion of Si, and the electrode maintains structural integrity for 50 cycles. A disordered porous structure is less robust and produces a large polarization, which produces continuous volume expansion with cycling and leads to inferior electrochemical performance. As a result, the capacity and capacity retention after 100 cycles at 0.5 A g−1 of Si@C-Pitch are respectively 8 times and 1.9 times those of Si@C-PR. This study provides theoretical guidance for the selection of carbon materials used in Si@C anodes.
  • loading
  • [1]
    Luo Z, Xiao Q, Lei G, et al. Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon,2016,98:373-380. doi: 10.1016/j.carbon.2015.11.031
    [2]
    Xiang J, Liu H, Na R, et al. Facile preparation of void-buffered Si@TiO2/C microspheres for high-capacity lithium ion battery anodes[J]. Electrochimica Acta,2020,337:135841-135849. doi: 10.1016/j.electacta.2020.135841
    [3]
    Liu N, Liu J, Jia D, et al. Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries[J]. Energy Storage Materials,2019,18:165-173. doi: 10.1016/j.ensm.2018.09.019
    [4]
    Zhang X, Wang D, Qiu X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications,2020,11(1):3826-3834. doi: 10.1038/s41467-020-17686-4
    [5]
    Liu N, Mamat X, Jiang R, et al. Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen-doped carbon coated Si composite for high performance lithium-ion batteries[J]. Chemical Engineering Journal,2018,343:78-85. doi: 10.1016/j.cej.2018.02.111
    [6]
    Xiao Z, Yu C, Lin X, et al. TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material[J]. Nano Energy,2020,77:105082-105093. doi: 10.1016/j.nanoen.2020.105082
    [7]
    Li J, Xiao X, Cheng Y T, et al. Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries[J]. The Journal of Physical Chemistry Letters,2013,4(20):3387-3391. doi: 10.1021/jz4018255
    [8]
    Wallas J M, Welch B C, Wang Y, et al. Spatial molecular layer deposition of ultrathin polyamide to stabilize silicon anodes in lithium-ion batteries[J]. ACS Applied Energy Materials,2019,2(6):4135-4143. doi: 10.1021/acsaem.9b00326
    [9]
    Shi J, Gao H, Hu G, et al. Core-shell structured Si@C nanocomposite for high-performance Li-ion batteries with a highly viscous gel as precursor[J]. Journal of Power Sources,2019,438:227001-227009. doi: 10.1016/j.jpowsour.2019.227001
    [10]
    Yun Q, Qin X, Lv W, et al. “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery[J]. Carbon,2015,93:59-67. doi: 10.1016/j.carbon.2015.05.032
    [11]
    Luo W, Wang Y, Chou S, et al. Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes[J]. Nano Energy,2016,27:255-264. doi: 10.1016/j.nanoen.2016.07.006
    [12]
    Choi S H, Nam G, Chae S, et al. Robust pitch on silicon nanolayer-embedded graphite for suppressing undesirable volume expansion[J]. Advanced Energy Materials,2019,9(4):1803121-1803129. doi: 10.1002/aenm.201803121
    [13]
    Fang G, Deng X, Zou J, et al. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries[J]. Electrochimica Acta,2019,295:498-506. doi: 10.1016/j.electacta.2018.10.186
    [14]
    He Y, Han F, Wang F, et al. Optimal microstructural design of pitch-derived soft carbon shell in yolk-shell silicon/carbon composite for superior lithium storage[J]. Electrochimica Acta,2021,373:137924-137934. doi: 10.1016/j.electacta.2021.137924
    [15]
    Fan S, Wang H, Qian J, et al. Covalently bonded silicon/carbon nanocomposites as cycle-stable anodes for li-ion batteries[J]. ACS Applied Materials Interfaces,2020,12(14):16411-16416. doi: 10.1021/acsami.0c00676
    [16]
    Chen C Y, Liang A H, Huang C L, et al. The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery[J]. Journal of Alloys and Compounds,2020,844:156025-156033. doi: 10.1016/j.jallcom.2020.156025
    [17]
    Liu Y, Tai Z, Zhou T, et al. An All-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries[J]. Advanced Materials,2017,29(44):1703028-1703038. doi: 10.1002/adma.201703028
    [18]
    Liu J, Duan Y, Song L, et al. Constructing sandwich-like polyaniline/graphene oxide composites with tunable conjugation length toward enhanced microwave absorption[J]. Organic Electronics,2018,63:175-183. doi: 10.1016/j.orgel.2018.09.017
    [19]
    Wang F, Song C, Zhao B, et al. One-pot solution synthesis of carbon-coated silicon nanoparticles as an anode material for lithium-ion batteries[J]. Chemical Communications,2020,56(7):1109-1112. doi: 10.1039/C9CC07255A
    [20]
    Zeng Y, Huang Y, Liu N. et al. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries[J]. Journal of Energy Chemistry,2021,54:727-735. doi: 10.1016/j.jechem.2020.06.022
    [21]
    Zhu X, Chen H, Wang Y, et al. Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A,2013,1(14):4483-4489. doi: 10.1039/c3ta01474f
    [22]
    Feng W, Qin M, Lv P, et al. A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength[J]. Carbon,2014,77:1054-1064. doi: 10.1016/j.carbon.2014.06.021
    [23]
    Lee G J, Pyun S I. Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors[J]. Electrochimica Acta,2006,51(15):3029-3038. doi: 10.1016/j.electacta.2005.08.037
    [24]
    Jing S, Jiang H, Hu Y, et al. Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life[J]. Advanced Functional Materials,2015,25(33):5395-5401. doi: 10.1002/adfm.201502330
    [25]
    Knight D S, White W B. Characterization of diamond films by Raman spectroscop[J]. Journal of Materials Research,1989,4:385-393. doi: 10.1557/JMR.1989.0385
    [26]
    Hu C, Sedghi S, Silvestre-Albero A, et al. Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway[J]. Carbon,2015,85:147-158. doi: 10.1016/j.carbon.2014.12.098
    [27]
    Chen J P, Wang Z F, Yi Z L, et al. SiC whiskers nucleated on rGO and its potential role in thermal conductivity and electronic insulation[J]. Chemical Engineering Journal,2021,423:130181-130189. doi: 10.1016/j.cej.2021.130181
    [28]
    Lai Q, Zhu S, Luo X, et al. Ultraviolet-visible spectroscopy of graphene oxides[J]. AIP Advances,2012,2(3):032146-032151. doi: 10.1063/1.4747817
    [29]
    Niu Y, Fang Q, Zhang X, et al. Structural evolution, induced effects and graphitization mechanism of reduced graphene oxide sheets/polyimide composites[J]. Composites Part B,2018,134:127-132. doi: 10.1016/j.compositesb.2017.09.047
    [30]
    Xu H, Ding M, Li D, et al. Silicon nanoparticles coated with nanoporous carbon as a promising anode material for lithium ion batteries[J]. New Journal of Chemistry,2020,44(40):17323-17332. doi: 10.1039/D0NJ03918G
    [31]
    Memarzadeh Lotfabad E, Kalisvaart P, Kohandehghan A. et al. Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li[J]. Journal of Materials Chemistry A,2014,2(46):19685-19695. doi: 10.1039/C4TA04995K
    [32]
    Wang Y, Tian W, Wang L, et al. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials Interfaces,2018,10(6):5577-5585. doi: 10.1021/acsami.7b18313
    [33]
    Yao W, Chen J, Zhan L, et al. Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage[J]. ACS Applied Materials Interfaces,2017,9(45):39371-39379. doi: 10.1021/acsami.7b11721
    [34]
    Mochida I, Korai Y, Ku C H, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon,2000,38:305-328. doi: 10.1016/S0008-6223(99)00176-1
    [35]
    KO T H, Kuo W S, Chang Y H. Microstructural changes of phenolic resinduring pyrolysis[J]. Journal of Applied Polymer Science,2000,81(5):1084-1089.
    [36]
    Tang H, Tu J P, Liu X Y, et al. Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries[J]. Journal of Materials Chemistry A,2014,2(16):5834-5840. doi: 10.1039/C3TA15395A
    [37]
    Zhou M, Cai T, Pu F, et al. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries[J]. ACS Applied Materials Interfaces,2013,5(8):3449-3455. doi: 10.1021/am400521n
    [38]
    Liang G, Qin X, Zou J, et al. Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities[J]. Carbon,2018,127:424-431. doi: 10.1016/j.carbon.2017.11.013
    [39]
    Li Y, Mu L, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials,2016,2:139-145. doi: 10.1016/j.ensm.2015.10.003
    [40]
    He Y, Xiang K, Zhou W, et al. Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries[J]. Chemical Engineering Journal,2018,353:666-678. doi: 10.1016/j.cej.2018.07.165
    [41]
    Chen Z, Chao D, Liu J, et al. 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability[J]. Journal of Materials Chemistry A,2017,5(30):15669-15675. doi: 10.1039/C7TA02888A
    [42]
    Huang Q, Loveridge M J, Genieser R, et al. Electrochemical evaluation and phase-related impedance sudies on silicon-few layer graphene (FLG) composite electrode systems[J]. Scientific Reports,2018,8(1):1386-1394. doi: 10.1038/s41598-018-19929-3
    [43]
    Michan A L, Divitini G, Pell A J, et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes[J]. Journal of the American Chemical Society,2016,138(25):7918-7931. doi: 10.1021/jacs.6b02882
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article Views(742) PDF Downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return