Volume 37 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
JIANG Jing, CHEN Xing, NIU Yi, HE Xin-rui, HU Ya-lin, WANG Chao. Advances in flexible sensors with MXene materials. New Carbon Mater., 2022, 37(2): 303-320. doi: 10.1016/S1872-5805(22)60589-4
Citation: JIANG Jing, CHEN Xing, NIU Yi, HE Xin-rui, HU Ya-lin, WANG Chao. Advances in flexible sensors with MXene materials. New Carbon Mater., 2022, 37(2): 303-320. doi: 10.1016/S1872-5805(22)60589-4

Advances in flexible sensors with MXene materials

doi: 10.1016/S1872-5805(22)60589-4
Funds:  National Key Research and Development Program of China (2017YFC0602102), National Natural Science Foundation of China (U20A20213 and 61727818), the Department of Science and Technology of Sichuan Province (2021JDTD0030) and AECC Sichuan Gas Turbine Research Establishment (WDZC-2020-3-2).
More Information
  • Corresponding author: WANG Chao, Professor. E-mail: cwang@uestc.edu.cn
  • Received Date: 2021-06-25
  • Rev Recd Date: 2021-09-07
  • Available Online: 2021-12-17
  • Publish Date: 2022-03-30
  • The rapid development of flexible electronics has made it possible to realize flexible sensors with high sensitivity and a wide detection range. In recent years, the two-dimensional MXene layer materials composed of transition metals, carbon and/or nitrogen have attracted the attention of many researchers in the field of flexible sensors, because of their high conductivity, high specific surface area, outstanding hydrophilicity, excellent mechanical properties and other characteristics. They can be composited with other materials, such as carbon nanotubes, carbon fibers and graphene, to form a variety of materials. Here, the structure and synthesis of MXene materials are introduced, followed by a summary of their preparation methods, structures, performance and sensing mechanisms as flexible sensors. Finally, research trends for flexible sensors using MXene materials are discussed.
  • loading
  • [1]
    Lim H R, Kim H S, Qazi R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials,2020,32(15):1901924. doi: 10.1002/adma.201901924
    [2]
    Nakata S, Shiomi M, Fujita Y, et al. A wearable pH sensor with high sensitivity based on a flexible charge-coupled device[J]. Nature Electronics,2018,1(11):596-603. doi: 10.1038/s41928-018-0162-5
    [3]
    Tang L, Hong W, Wang X, et al. Ultraminiature and flexible sensor based on interior corner flow for direct pressure sensing in biofluids[J]. Small,2019,15(39):1900950. doi: 10.1002/smll.201900950
    [4]
    Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics[J]. Advanced Materials Technologies,2019,4(3):1800628. doi: 10.1002/admt.201800628
    [5]
    Yao L, Ou G, Liu W, et al. Fabrication of high performance oxygen sensors using multilayer oxides with high interfacial conductivity[J]. Journal of Materials Chemistry A,2016,4(29):11422-11429. doi: 10.1039/C6TA01052K
    [6]
    Jung B K, Jeon S, Woo H K, et al. Janus-like jagged structure with nanocrystals for self-sorting wearable tactile sensor[J]. ACS Applied Materials & Interfaces,2021,13(5):6394-6403.
    [7]
    Swager T M. Sensor Technologies empowered by materials and molecular innovations[J]. Angewandte Chemie International Edition,2018,57(16):4248-4257. doi: 10.1002/anie.201711611
    [8]
    Miao L, Wan J, Song Y, et al. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure[J]. ACS Applied Materials & Interfaces,2019,11(42):39219-39227.
    [9]
    Li H, Zhao L, Meng J, et al. Triboelectric-polarization-enhanced high sensitive ZnO UV sensor[J]. Nano Today,2020,33:100873. doi: 10.1016/j.nantod.2020.100873
    [10]
    Kaidarova A, Marengo M, Marinaro G, et al. Flexible and biofouling independent salinity sensor[J]. Advanced Materials Interfaces,2018,5(23):1801110. doi: 10.1002/admi.201801110
    [11]
    Singh E, Meyyappan M, Nalwa H S. Flexible graphene-based wearable gas and chemical sensors[J]. ACS Applied Materials & Interfaces,2017,9(40):34544-34586.
    [12]
    Ahmadpoor F, Sharma P. A perspective on the statistical mechanics of 2D materials[J]. Extreme Mechanics Letters,2017,14:38-43. doi: 10.1016/j.eml.2016.12.007
    [13]
    Zhang X, Beyer A. Mechanics of free-standing inorganic and molecular 2D materials[J]. Nanoscale,2021,13(3):1443-1484. doi: 10.1039/D0NR07606F
    [14]
    Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes[J]. Nano Energy,2017,34:249-256. doi: 10.1016/j.nanoen.2017.02.043
    [15]
    Chen X, Wang S, Shi J, et al. Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor[J]. Advanced Materials Interfaces,2019,6(22):1901160. doi: 10.1002/admi.201901160
    [16]
    Kim S J, Koh H J, Ren C E, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano,2018,12(2):986-993. doi: 10.1021/acsnano.7b07460
    [17]
    Kurra N, Alhabeb M, Maleski K, et al. Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors[J]. ACS Energy Letters,2018,3(9):2094-2100. doi: 10.1021/acsenergylett.8b01062
    [18]
    Wu X, Liao H, Ma D, et al. A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites[J]. Journal of Materials Chemistry C,2020,8(5):1788-1795. doi: 10.1039/C9TC05575D
    [19]
    Dai C, Lin H, Xu G, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia[J]. Chemistry of Materials,2017,29(20):8637-8652. doi: 10.1021/acs.chemmater.7b02441
    [20]
    Sinha A, Dhanjai, Zhao H, et al. MXene: An emerging material for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry,2018,105:424-435. doi: 10.1016/j.trac.2018.05.021
    [21]
    Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):16098. doi: 10.1038/natrevmats.2016.98
    [22]
    Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [23]
    Gao L, Bao W, Kuklin A V, et al. Hetero-MXenes: Theory, synthesis, and emerging applications[J]. Advanced Materials,2021,33(10):2004129. doi: 10.1002/adma.202004129
    [24]
    Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [25]
    Naguib M, Mochalin V N, Barsoum M W, et al. 25th Anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [26]
    Pang J, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews,2019,48(1):72-133. doi: 10.1039/C8CS00324F
    [27]
    Lei J C, Zhang X, Zhou Z. Recent advances in MXene: Preparation, properties, and applications[J]. Frontiers of Physics,2015,10(3):276-286. doi: 10.1007/s11467-015-0493-x
    [28]
    Li R, Zhang L, Shi L, et al. MXene Ti3C2: An effective 2d light-to-heat conversion material[J]. ACS Nano,2017,11(4):3752-3759. doi: 10.1021/acsnano.6b08415
    [29]
    Shi X, Wang H, Xie X, et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale "brick-and-mortar" architecture[J]. ACS Nano,2019,13(1):649-659. doi: 10.1021/acsnano.8b07805
    [30]
    Li D, Liu G, Zhang Q, et al. Virtual sensor array based on MXene for selective detections of VOCs[J]. Sensors and Actuators B: Chemical,2021,331:129414. doi: 10.1016/j.snb.2020.129414
    [31]
    Pandey M, Thygesen K S. Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study[J]. The Journal of Physical Chemistry C,2017,121(25):13593-13598. doi: 10.1021/acs.jpcc.7b05270
    [32]
    Gogotsi Y. Transition metal carbides go 2D[J]. Nature Materials,2015,14(11):1079-1080. doi: 10.1038/nmat4386
    [33]
    Srivastava P, Mishra A, Mizuseki H, et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene[J]. ACS Applied Materials & Interfaces,2016,8(36):24256-24264.
    [34]
    Sun W, Shah S A, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution[J]. Journal of Materials Chemistry A,2017,5(41):21663-21668. doi: 10.1039/C7TA05574A
    [35]
    Xiao X, Yu H, Jin H, et al. Salt-templated synthesis of 2D metallic MoN and other nitrides[J]. ACS Nano,2017,11(2):2180-2186. doi: 10.1021/acsnano.6b08534
    [36]
    Kajiyama S, Szabova L, Iinuma H, et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination[J]. Advanced Energy Materials,2017,7(9):1601873. doi: 10.1002/aenm.201601873
    [37]
    Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
    [38]
    Kurtoglu M, Naguib M, Gogotsi Y, et al. First principles study of two-dimensional early transition metal carbides[J]. MRS Communications,2012,2(4):133-137. doi: 10.1557/mrc.2012.25
    [39]
    Zha X H, Yin J, Zhou Y, et al. Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene[J]. The Journal of Physical Chemistry C,2016,120(28):15082-15088. doi: 10.1021/acs.jpcc.6b04192
    [40]
    Enyashin A N, Ivanovskii A L. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2−xNx(OH)2 from DFTB calculations[J]. Journal of Solid State Chemistry,2013,207:42-48. doi: 10.1016/j.jssc.2013.09.010
    [41]
    Anasori B, Shi C, Moon E J, et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers[J]. Nanoscale Horizons,2016,1(3):227-234. doi: 10.1039/C5NH00125K
    [42]
    Jing H, Yeo H, Lyu B, et al. Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium[J]. ACS Nano,2021,15(1):1388-1396. doi: 10.1021/acsnano.0c08664
    [43]
    Kamysbayev V, Filatov A S, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science,2020,369(6506):979. doi: 10.1126/science.aba8311
    [44]
    Borysiuk V N, Mochalin V N, Gogotsi Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes)[J]. Nanotechnology,2015,26(26
    [45]
    Guo Z, Zhou J, Si C, et al. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories[J]. Physical Chemistry Chemical Physics,2015,17(23):15348-15354. doi: 10.1039/C5CP00775E
    [46]
    Boota M, Anasori B, Voigt C, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene)[J]. Advanced Materials,2016,28(7):1517-1522. doi: 10.1002/adma.201504705
    [47]
    Ling Z, Ren C E, Zhao M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences,2014,111(47):16676. doi: 10.1073/pnas.1414215111
    [48]
    Wu X, Hao L, Zhang J, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J]. Journal of Membrane Science,2016,515:175-188. doi: 10.1016/j.memsci.2016.05.048
    [49]
    Chiou J C, Wu C C. A wearable and wireless gas-sensing system using flexible polymer/multi-walled carbon nanotube composite films[J]. Polymers,2017,9(9
    [50]
    Huang Y, Fan X, Chen S C, et al. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials,2019,29(12):1808509. doi: 10.1002/adfm.201808509
    [51]
    Li T, Li Y, Zhang T. Materials, structures, and functions for flexible and stretchable biomimetic sensors[J]. Accounts of Chemical Research,2019,52(2):288-296. doi: 10.1021/acs.accounts.8b00497
    [52]
    Rim Y S, Bae S H, Chen H, et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Advanced Materials,2016,28(22):4415-4440. doi: 10.1002/adma.201505118
    [53]
    Wen N, Zhang L, Jiang D, et al. Emerging flexible sensors based on nanomaterials: recent status and applications[J]. Journal of Materials Chemistry A,2020,8(48):25499-25527. doi: 10.1039/D0TA09556G
    [54]
    Song M, Pang S Y, Guo F, et al. Fluoride-free 2D niobium carbide MXenes as stable and biocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity[J]. Advanced Science,2020,7(24):2001546. doi: 10.1002/advs.202001546
    [55]
    Wu L, Lu X, Dhanjai, et al. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol[J]. Biosensors and Bioelectronics,2018,107:69-75. doi: 10.1016/j.bios.2018.02.021
    [56]
    Chen J, Zhu Y, Jiang W. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer[J]. Composites Science and Technology,2020,186:107938. doi: 10.1016/j.compscitech.2019.107938
    [57]
    Huang K, Ning H, Hu N, et al. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process[J]. Composites Science and Technology,2020,192:108105. doi: 10.1016/j.compscitech.2020.108105
    [58]
    Li S, Wang T, Yang Z, et al. Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate[J]. Sensors and Actuators B: Chemical,2018,273:726-734. doi: 10.1016/j.snb.2018.06.072
    [59]
    Wang Y, Wang X, Lu W, et al. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat[J]. Talanta,2019,198:86-92. doi: 10.1016/j.talanta.2019.01.104
    [60]
    Han J W, Kim B, Li J, et al. A carbon nanotube based ammonia sensor on cellulose paper[J]. RSC Advances,2014,4(2):549-553. doi: 10.1039/C3RA46347H
    [61]
    Güder F, Ainla A, Redston J, et al. Paper-based electrical respiration sensor[J]. Angewandte Chemie International Edition,2016,55(19):5727-5732. doi: 10.1002/anie.201511805
    [62]
    Guan X, Hou Z, Wu K, et al. Flexible humidity sensor based on modified cellulose paper[J]. Sensors and Actuators B: Chemical,2021,339:129879. doi: 10.1016/j.snb.2021.129879
    [63]
    Lee J, Shin S, Lee S, et al. Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics[J]. ACS Nano,2018,12(5):4259-4268. doi: 10.1021/acsnano.7b07795
    [64]
    Wang H, Liu Z, Ding J, et al. Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors[J]. Advanced Materials,2016,28(25):4998-5007. doi: 10.1002/adma.201600405
    [65]
    Jia Y, Shen L, Liu J, et al. An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors[J]. Journal of Materials Chemistry C,2019,7(12):3496-3502. doi: 10.1039/C8TC05906C
    [66]
    Yang Z, Pang Y, Han X L, et al. Graphene textile strain sensor with negative resistance variation for human motion detection[J]. ACS Nano,2018,12(9):9134-9141. doi: 10.1021/acsnano.8b03391
    [67]
    Oliveri A, Maselli M, Lodi M, et al. Model-based compensation of rate-dependent hysteresis in a piezoresistive strain sensor[J]. IEEE Transactions on Industrial Electronics,2019,66(10):8205-8213. doi: 10.1109/TIE.2018.2884204
    [68]
    Zuo C, Ding L. Drop-casting to make efficient perovskite solar cells under high humidity[J]. Angewandte Chemie International Edition,2021,60(20):11242-11246. doi: 10.1002/anie.202101868
    [69]
    Brinker C J, Frye G C, Hurd A J, et al. Fundamentals of sol-gel dip coating[J]. Thin Solid Films,1991,201(1):97-108. doi: 10.1016/0040-6090(91)90158-T
    [70]
    Montazeri K, Currie M, Verger L, et al. Beyond gold: Spin-coated Ti3C2-based MXene photodetectors[J]. Advanced Materials,2019,31(43):1903271. doi: 10.1002/adma.201903271
    [71]
    Wang C, Liu T, Wang X, et al. A novel limiting current oxygen sensor prepared by slurry spin coating[J]. Sensors and Actuators B: Chemical,2018,270:518-524. doi: 10.1016/j.snb.2018.05.076
    [72]
    Huang Q, Zhu Y. Gravure printing of water-based silver nanowire ink on plastic substrate for flexible electronics[J]. Scientific Reports,2018,8(1):15167. doi: 10.1038/s41598-018-33494-9
    [73]
    Zhang C, Mckeon L, Kremer M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications,2019,10(1):1795. doi: 10.1038/s41467-019-09398-1
    [74]
    Cai Y, Shen J, Ge G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano,2018,12(1):56-62. doi: 10.1021/acsnano.7b06251
    [75]
    Chao M, Wang Y, Ma D, et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing[J]. Nano Energy,2020,78:105187. doi: 10.1016/j.nanoen.2020.105187
    [76]
    Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology,2011,6(5):296-301. doi: 10.1038/nnano.2011.36
    [77]
    Han J, Lee J Y, Lee J, et al. Highly stretchable and reliable, transparent and conductive entangled graphene mesh networks[J]. Advanced Materials,2018,30(3):1704626. doi: 10.1002/adma.201704626
    [78]
    Wang Y, Wang L, Yang T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Advanced Functional Materials,2014,24(29):4666-4670. doi: 10.1002/adfm.201400379
    [79]
    Liu Q, Chen J, Li Y, et al. High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions[J]. ACS Nano,2016,10(8):7901-7906. doi: 10.1021/acsnano.6b03813
    [80]
    Liu H, Jiang H, Du F, et al. Flexible and degradable paper-based strain sensor with low cost[J]. ACS Sustainable Chemistry & Engineering,2017,5(11):10538-10543.
    [81]
    Xu C, Zheng Z, Lin M, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors[J]. ACS Applied Materials & Interfaces,2020,12(31):35482-35492.
    [82]
    Zhang H, Han W, Xu K, et al. Metallic sandwiched-aerogel hybrids enabling flexible and stretchable intelligent sensor[J]. Nano Letters,2020,20(5):3449-3458. doi: 10.1021/acs.nanolett.0c00372
    [83]
    Xiao X, Yuan L, Zhong J, et al. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films[J]. Advanced Materials,2011,23(45):5440-5444. doi: 10.1002/adma.201103406
    [84]
    Jiang D, Wang Y, Li B, et al. Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate[J]. Macromolecular Materials and Engineering,2019,304(7):1900074. doi: 10.1002/mame.201900074
    [85]
    Yang Y, Cao Z, He P, et al. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response[J]. Nano Energy,2019,66:104134. doi: 10.1016/j.nanoen.2019.104134
    [86]
    Cao Z, Yang Y, Zheng Y, et al. Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin[J]. Journal of Materials Chemistry A,2019,7(44):25314-25323. doi: 10.1039/C9TA09225K
    [87]
    Saeidi-Javash M, Du Y, Zeng M, et al. All-printed MXene–graphene nanosheet-based bimodal sensors for simultaneous strain and temperature sensing[J]. ACS Applied Electronic Materials,2021,3(5):2341-2348. doi: 10.1021/acsaelm.1c00218
    [88]
    Yu Y, Peng S, Blanloeuil P, et al. Wearable temperature sensors with enhanced sensitivity by engineering microcrack morphology in PEDOT: PSS–PDMS sensors[J]. ACS Applied Materials & Interfaces,2020,12(32):36578-36588.
    [89]
    Yang J, Wei D, Tang L, et al. Wearable temperature sensor based on graphene nanowalls[J]. RSC Advances,2015,5(32):25609-25615. doi: 10.1039/C5RA00871A
    [90]
    Mahmoud W E, Al-Bluwi S A. Development of highly sensitive temperature sensor made of graphene monolayers doped P(VDF-TrFE) nanocomposites[J]. Sensors and Actuators A:Physical,2020,312:112101. doi: 10.1016/j.sna.2020.112101
    [91]
    Turkani V S, Maddipatla D, Narakathu B B, et al. A carbon nanotube based NTC thermistor using additive print manufacturing processes[J]. Sensors and Actuators A:Physical,2018,279:1-9. doi: 10.1016/j.sna.2018.05.042
    [92]
    Bi S, Hou L, Lu Y. An integrated wearable strain, temperature and humidity sensor for multifunctional monitoring[J]. Composites Part A: Applied Science and Manufacturing,2021,149:106504. doi: 10.1016/j.compositesa.2021.106504
    [93]
    Wu L, Qian J, Peng J, et al. Screen-printed flexible temperature sensor based on FG/CNT/PDMS composite with constant TCR[J]. Journal of Materials Science: Materials in Electronics,2019,30(10):9593-9601. doi: 10.1007/s10854-019-01293-1
    [94]
    Bae G Y, Han J T, Lee G, et al. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity[J]. Advanced Materials,2018,30(43):1803388. doi: 10.1002/adma.201803388
    [95]
    Courbat J, Kim Y B, Briand D, et al. Inkjet printing on paper for the realization of humidity and temperature sensors[C]. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011: 1356-1359.
    [96]
    Cui Z, Poblete F R, Zhu Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors[J]. ACS Applied Materials & Interfaces,2019,11(19):17836-17842.
    [97]
    Shin J, Jeong B, Kim J, et al. Sensitive wearable temperature sensor with seamless monolithic integration[J]. Advanced Materials,2020,32(2):1905527. doi: 10.1002/adma.201905527
    [98]
    Chen J, Chen K, Tong D, et al. CO2 and temperature dual responsive "smart" MXene phases[J]. Chemical Communications,2015,51(2):314-317. doi: 10.1039/C4CC07220K
    [99]
    Tran M H, Brilmayer R, Liu L, et al. Synthesis of a smart hybrid MXene with switchable conductivity for temperature sensing[J]. ACS Applied Nano Materials,2020,3(5):4069-4076. doi: 10.1021/acsanm.0c00118
    [100]
    Lei Y, Zhao W, Zhang Y, et al. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis[J]. Small,2019,15(19):1901190. doi: 10.1002/smll.201901190
    [101]
    Lin K C, Muthukumar S, Prasad S. Flex-go (flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat[J]. Talanta,2020,214:120810. doi: 10.1016/j.talanta.2020.120810
    [102]
    Abellán-Llobregat A, Jeerapan I, Bandodkar A, et al. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration[J]. Biosensors and Bioelectronics,2017,91:885-891. doi: 10.1016/j.bios.2017.01.058
    [103]
    Pal R K, Pradhan S, Narayanan L, et al. Micropatterned conductive polymer biosensors on flexible PDMS films[J]. Sensors and Actuators B: Chemical,2018,259:498-504. doi: 10.1016/j.snb.2017.12.082
    [104]
    Xu M, Yadavalli V K. Flexible biosensors for the impedimetric detection of protein targets using silk-conductive polymer biocomposites[J]. ACS Sensors,2019,4(4):1040-1047. doi: 10.1021/acssensors.9b00230
    [105]
    Sha R, Vishnu N, Badhulika S. MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of uric acid in human urine samples[J]. Sensors and Actuators B:Chemical,2019,279:53-60. doi: 10.1016/j.snb.2018.09.106
    [106]
    Zhao A, Zhang Z, Zhang P, et al. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing[J]. Analytica Chimica Acta,2016,938:63-71. doi: 10.1016/j.aca.2016.08.013
    [107]
    Lin H, Gao S, Dai C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society,2017,139(45):16235-16247. doi: 10.1021/jacs.7b07818
    [108]
    Lee E, Vahidmohammadi A, Yoon Y S, et al. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases[J]. ACS Sensors,2019,4(6):1603-1611. doi: 10.1021/acssensors.9b00303
    [109]
    Lee S H, Eom W, Shin H, et al. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing[J]. ACS Applied Materials & Interfaces,2020,12(9):10434-10442.
    [110]
    Ammu S, Dua V, Agnihotra S R, et al. Flexible, all-organic chemiresistor for detecting chemically aggressive vapors[J]. Journal of the American Chemical Society,2012,134(10):4553-4556. doi: 10.1021/ja300420t
    [111]
    Lee C, Ahn J, Lee K B, et al. Graphene-based flexible NO2 chemical sensors[J]. Thin Solid Films,2012,520(16):5459-5462. doi: 10.1016/j.tsf.2012.03.095
    [112]
    Niu Y, Wang R, Jiao W, et al. MoS2 graphene fiber based gas sensing devices[J]. Carbon,2015,95:34-41. doi: 10.1016/j.carbon.2015.08.002
    [113]
    Seekaew Y, Lokavee S, Phokharatkul D, et al. Low-cost and flexible printed graphene–PEDOT: PSS gas sensor for ammonia detection[J]. Organic Electronics,2014,15(11):2971-2981. doi: 10.1016/j.orgel.2014.08.044
    [114]
    Kumar L, Rawal I, Kaur A, et al. Flexible room temperature ammonia sensor based on polyaniline[J]. Sensors and Actuators B: Chemical,2017,240:408-416. doi: 10.1016/j.snb.2016.08.173
    [115]
    Wan P, Wen X, Sun C, et al. Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing[J]. Small,2015,11(40):5409-5415. doi: 10.1002/smll.201501772
    [116]
    Shin D H, Lee J S, Jun J, et al. Flower-like palladium nanoclusters decorated graphene electrodes for ultrasensitive and flexible hydrogen gas sensing[J]. Scientific Reports,2015,5(1):12294. doi: 10.1038/srep12294
    [117]
    Rieu M, Camara M, Tournier G, et al. Fully inkjet printed SnO2 gas sensor on plastic substrate[J]. Sensors and Actuators B: Chemical,2016,236:1091-1097. doi: 10.1016/j.snb.2016.06.042
    [118]
    Ahn H, Park J H, Kim S B, et al. Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring[J]. Electrochemical and Solid State Letters,2010,13(11):J125-J128. doi: 10.1149/1.3479692
    [119]
    Yu X F, Li Y C, Cheng J B, et al. Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity[J]. ACS Applied Materials & Interfaces,2015,7(24):13707-13713.
    [120]
    Naqvi S R, Shukla V, Jena N K, et al. Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants[J]. Applied Materials Today,2020,19:100574. doi: 10.1016/j.apmt.2020.100574
    [121]
    Seredych M, Shuck C E, Pinto D, et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis[J]. Chemistry of Materials,2019,31(9):3324-3332. doi: 10.1021/acs.chemmater.9b00397
    [122]
    Guo J, Legum B, Anasori B, et al. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide[J]. Advanced Materials,2018,30(32):1801846. doi: 10.1002/adma.201801846
    [123]
    Seyedin S, Uzun S, Levitt A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials,2020,30(12):1910504. doi: 10.1002/adfm.201910504
    [124]
    An H, Habib T, Shah S, et al. Surface-agnostic highly stretchable and bendable conductive MXene multilayers[J]. Science Advances,2018,4(3):eaaq0118.
    [125]
    Krecker M C, Bukharina D, Hatter C B, et al. Bioencapsulated MXene flakes for enhanced stability and composite precursors[J]. Advanced Functional Materials,2020,30(43):2004554. doi: 10.1002/adfm.202004554
    [126]
    Wu C W, Unnikrishnan B, Chen I W P, et al. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application[J]. Energy Storage Materials,2020,25:563-571. doi: 10.1016/j.ensm.2019.09.026
    [127]
    Yu L, Parker S, Xuan H, et al. Flexible multi-material fibers for distributed pressure and temperature sensing[J]. Advanced Functional Materials,2020,30(9):1908915. doi: 10.1002/adfm.201908915
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article Views(3469) PDF Downloads(496) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return