Volume 37 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
AN Fu, BAO Xiao-qing, DENG Xiao-yang, MA Zi-zai, WANG Xiao-guang. Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Mater., 2022, 37(2): 338-357. doi: 10.1016/S1872-5805(22)60590-0
Citation: AN Fu, BAO Xiao-qing, DENG Xiao-yang, MA Zi-zai, WANG Xiao-guang. Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Mater., 2022, 37(2): 338-357. doi: 10.1016/S1872-5805(22)60590-0

Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future

doi: 10.1016/S1872-5805(22)60590-0
Funds:  National Natural Science Foundation of China (21878201 and 22008165)
More Information
  • Author Bio:

    安 复,硕士研究生. E-mail:aaanfu@163.com

  • Corresponding author: WANG Xiao-guang, Professor. E-mail: wangxiaoguang@tyut.edu.cn
  • Received Date: 2021-08-26
  • Rev Recd Date: 2021-11-13
  • Available Online: 2021-12-17
  • Publish Date: 2022-03-30
  • In recent years, metal-free carbon materials have been the subject of much research concerning their potential use in replacing high-cost Pt-based oxygen reduction reaction (ORR) electrocatalysts. Myriads of research papers in this field have been dedicated to the preparation and characterization of various metal-free nanocarbon materials, as well as to their practical applications. Non-metal heteroatom doping and the introduction of edge defects are typical nanocarbon modification methods, which can significantly reduce the overpotential of the ORR in alkaline and acidic electrolytes. In order to have good activity in actual devices such as fuel cells, it is necessary to increase the ORR intrinsic activity of nanocarbons. Despite many studies of the subject, the intrinsic relationship between nanocarbon composition, structure regulation and catalytic activity is still not clear and needs further exploration. This review details the various nanocarbons used for the ORR as well as their reaction mechanisms in an attempt to propose scientific and specific structural modification strategies. The development of carbon-based metal-free electrocatalysts in the field of oxygen reduction catalysis in recent years is summarized, with a view to providing relevant knowledge for the future design, synthesis and applications of these carbon-based non-metallic catalysts for the ORR.
  • loading
  • [1]
    Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials,2016,15(6):611-615. doi: 10.1038/nmat4589
    [2]
    Zhao P, Xu W, Hua X, et al. Facile synthesis of a N-doped Fe3C@CNT/porous carbon hybrid for an advanced oxygen reduction and water oxidation electrocatalyst[J]. Journal of Physical Chemistry C,2016,120(20):11006-11013. doi: 10.1021/acs.jpcc.6b03070
    [3]
    Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352. doi: 10.1038/35104620
    [4]
    Roche I, Chainet E, Chatenet M, et al. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism[J]. Journal of Physical Chemistry C,2007,111(3):1434-1443. doi: 10.1021/jp0647986
    [5]
    Lee K, Zhang L, Lui H, et al. Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts[J]. Electrochimica Acta,2009,54(20):4704-4711. doi: 10.1016/j.electacta.2009.03.081
    [6]
    Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode[J]. Science,2008,321(5889):671-674. doi: 10.1126/science.1159267
    [7]
    Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [8]
    Zheng Y, Jiao Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small,2012,8(23):3550-3566. doi: 10.1002/smll.201200861
    [9]
    Yu D, Nagelli E, Du F, et al. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. Journal of Physical Chemistry Letters,2010,1(14):2165-2173. doi: 10.1021/jz100533t
    [10]
    Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews,2015,115(11):4823-4892. doi: 10.1021/cr5003563
    [11]
    Li Y, Tong Y, Peng F. Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism[J]. Journal of Energy Chemistry,2020,48:308-321. doi: 10.1016/j.jechem.2020.02.027
    [12]
    Qu L, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano,2010,4(3):1321-1326. doi: 10.1021/nn901850u
    [13]
    Yang L, Jiang S, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2011,50(31):7132-7135. doi: 10.1002/anie.201101287
    [14]
    Wang S, Iyyamperumal E, Roy A, et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen[J]. Angewandte Chemie International Edition,2011,50(49):11756-11760. doi: 10.1002/anie.201105204
    [15]
    Jeon I Y, Zhang S, Zhang L, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect[J]. Advanced Materials,2013,25(42):6138-6145. doi: 10.1002/adma.201302753
    [16]
    Shen A, Zou Y, Wang Q, et al. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane[J]. Angewandte Chemie-International Edition,2014,53(40):10804-10808. doi: 10.1002/anie.201406695
    [17]
    Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology,2015,10(5):444-452. doi: 10.1038/nnano.2015.48
    [18]
    Jiang Y, Yang L, Sun T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. ACS Catalysis,2015,5(11):6707-6712. doi: 10.1021/acscatal.5b01835
    [19]
    Zhang J, Qu L, Shi G, et al. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions[J]. Angewandte Chemie International Edition,2016,55(6):2230-2234. doi: 10.1002/anie.201510495
    [20]
    Hu C G, Dai L M. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution[J]. Advanced Materials,2017,29(9):1604942. doi: 10.1002/adma.201604942
    [21]
    Xue L, Li Y, Liu X, et al. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells[J]. Nature Communications,2018,9:3819. doi: 10.1038/s41467-018-06279-x
    [22]
    Liu L, Zeng G, Chen J, et al. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices[J]. Nano Energy,2018,49:393-402. doi: 10.1016/j.nanoen.2018.04.061
    [23]
    Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping[J]. Nature Catalysis,2019,2(8):688-695. doi: 10.1038/s41929-019-0297-4
    [24]
    Yan X, Liu H, Jia Y, et al. Clarifying the origin of oxygen reduction activity in heteroatom-modified defective carbon[J]. Cell Reports Physical Science,2020,1(7):100083. doi: 10.1016/j.xcrp.2020.100083
    [25]
    DAI L. Functionalization of graphene for efficient energy conversion and storage [J]. Accounts of Chemical Research, 2013, 46(1): 31–42.
    [26]
    Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science,2013,6(10):2839-2855.
    [27]
    Zhao Y, Yang L, Chen S, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. Journal of the American Chemical Society,2013,135(4):1201-1204. doi: 10.1021/ja310566z
    [28]
    Wei W, Liang H, Parvez K, et al. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2014,53(6):1570-1574. doi: 10.1002/anie.201307319
    [29]
    Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angewandte Chemie-International Edition,2012,51(16):3892-3896. doi: 10.1002/anie.201107981
    [30]
    Chen P, Xiao T Y, Qian Y H, et al. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity[J]. Advanced Materials,2013,25(23):3192-3196. doi: 10.1002/adma.201300515
    [31]
    Chen S, Bi J, Zhao Y, et al. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Advanced Materials,2012,24(41):5593-5597. doi: 10.1002/adma.201202424
    [32]
    Liu Z-W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie-International Edition,2011,50(14):3257-3261. doi: 10.1002/anie.201006768
    [33]
    Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society,2012,134(39):16127-16130. doi: 10.1021/ja306376s
    [34]
    Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano,2011,6:205-211.
    [35]
    Sun X, Zhang Y, Song P, et al. Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction[J]. ACS Catalysis,2013,3(8):1726-1729. doi: 10.1021/cs400374k
    [36]
    Lin Z, Waller G H, Liu Y, et al. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction[J]. Nano Energy,2013,2(2):241-248. doi: 10.1016/j.nanoen.2012.09.002
    [37]
    Jahan M, Bao Q, Loh K P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction[J]. Journal of the American Chemical Society,2012,134(15):6707-6713. doi: 10.1021/ja211433h
    [38]
    Zhang P, Sun F, Xiang Z, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy & Environmental Science,2014,7(1):442-450.
    [39]
    Zhang L, Su Z, Jiang F, et al. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions[J]. Nanoscale,2014,6(12):6590-6602. doi: 10.1039/C4NR00348A
    [40]
    Zhou M, Wang H L, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews,2016,45(5):1273-1307. doi: 10.1039/C5CS00414D
    [41]
    Wen Z, Wang X, Mao S, et al. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor[J]. Advanced Materials,2012,24(41):5610-5616. doi: 10.1002/adma.201201920
    [42]
    Xue Y, Liu J, Chen H, et al. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells[J]. Angewandte Chemie-International Edition,2012,51(48):12124-12127. doi: 10.1002/anie.201207277
    [43]
    Wang X, Li X, Zhang L, et al. N-Doping of graphene through electrothermal reactions with ammonia[J]. Science,2009,324(5928):768-771. doi: 10.1126/science.1170335
    [44]
    Wang Y, Shao Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano,2010,4(4):1790-1798. doi: 10.1021/nn100315s
    [45]
    Wang T, Chen Z X, Chen Y G, et al. Identifying the active site of N-doped graphene for oxygen reduction by selective chemical modification[J]. ACS Energy Letters,2018,3(4):986-991. doi: 10.1021/acsenergylett.8b00258
    [46]
    Yu D, Zhang Q, Dai L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction[J]. Journal of the American Chemical Society,2010,132(43):15127-15129. doi: 10.1021/ja105617z
    [47]
    Lepro X, Ovalle-Robles R, Lima M D, et al. Catalytic twist-spun yarns of nitrogen-doped carbon nanotubes[J]. Advanced Functional Materials,2012,22(5):1069-1075. doi: 10.1002/adfm.201102114
    [48]
    Han H, Noh Y, Kim Y, et al. An N-doped porous carbon network with a multidirectional structure as a highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Nanoscale,2019,11(5):2423-2433. doi: 10.1039/C8NR10242B
    [49]
    Ren G, Chen S, Zhang J, et al. N-doped porous carbon spheres as metal-free electrocatalyst for oxygen reduction reaction[J]. Journal of Materials Chemistry A,2021,9(9):5751-5758. doi: 10.1039/D0TA11493F
    [50]
    Tang Y, Allen B L, Kauffman D R, et al. Electrocatalytic activity of nitrogen-doped carbon nanotube cups[J]. Journal of the American Chemical Society,2009,131(37):13200-13201. doi: 10.1021/ja904595t
    [51]
    Bakhtavar S, Mehrpooya M, Manoochehri M, et al. Proposal of a facile method to fabricate a multi-dope multiwall carbon nanotube as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Sustainabililty,2022,14(2):965. doi: 10.3390/su14020965
    [52]
    Lei W, Deng Y P, Li G, et al. Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries[J]. ACS Catalysis,2018,8(3):2464-2472. doi: 10.1021/acscatal.7b02739
    [53]
    Sun T, Wang J, Qiu C, et al. B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Advanced Science,2018,5(7):1800036. doi: 10.1002/advs.201800036
    [54]
    Zhu P, Gao J, Chen X, et al. An efficient metal-free bifunctional oxygen electrocatalyst of carbon co-doped with fluorine and nitrogen atoms for rechargeable Zn-air battery[J]. International Journal of Hydrogen Energy,2020,45(16):9512-9521. doi: 10.1016/j.ijhydene.2020.01.131
    [55]
    Lu Y, Yang L, Cao D. Nitrogen and fluorine-codoped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction in fuel cells[J]. ACS Applied Materials & Interfaces,2017,9(38):32859-32867.
    [56]
    Yang M, Shu X, Zhang J. A defect-rich N, P co-doped carbon foam as efficient electrocatalyst toward oxygen reduction reaction[J]. Chemcatchem,2020,12(16):4105-4111. doi: 10.1002/cctc.202000363
    [57]
    Ding W, Li L, Xiong K, et al. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society,2015,137(16):5414-5420. doi: 10.1021/jacs.5b00292
    [58]
    Sun T, Wu Q, Jiang Y, et al. Sulfur and nitrogen codoped carbon tubes as bifunctional metal-free electrocatalysts for oxygen reduction and hydrogen evolution in acidic media[J]. Chemistry,2016,22(30):10326-10329. doi: 10.1002/chem.201601535
    [59]
    Choi C H, Park S H, Woo S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J]. ACS Nano,2012,6(8):7084-7091. doi: 10.1021/nn3021234
    [60]
    Choi C H, Chung M W, Park S H, et al. Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media[J]. Physical Chemistry Chemical Physics,2013,15(6):1802-1805. doi: 10.1039/C2CP44147K
    [61]
    Zhang J T, Dai L M. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting[J]. Angewandte Chemie-International Edition,2016,55(42):13296-13300. doi: 10.1002/anie.201607405
    [62]
    Long Y, Ye F, Shi L, et al. N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries[J]. Carbon,2021,179:365-376. doi: 10.1016/j.carbon.2021.04.039
    [63]
    Kim H, Lee K, Woo S I, et al. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons[J]. Physical Chemistry Chemical Physics,2011,13(39):17505-17510. doi: 10.1039/c1cp21665a
    [64]
    Geng D, Chen Y, Chen Y, et al. High oxygen-reduction activity and durability of nitrogen-doped graphene[J]. Energy & Environmental Science,2011,4(3):760-764.
    [65]
    Zhang L, Lin C Y, Zhang D, et al. Guiding principles for designing highly efficient metal-free carbon catalysts[J]. Advanced Materials,2019,31(13):1805252. doi: 10.1002/adma.201805252
    [66]
    Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews,2015,44(8):2060-2086. doi: 10.1039/C4CS00470A
    [67]
    Meng W, Chen W, Zhao L, et al. Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance[J]. Nano Energy,2014,8:133-140. doi: 10.1016/j.nanoen.2014.06.007
    [68]
    Jia Y, Zhang L Z, Du A J, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced Materials,2016,28(43):9532-9538. doi: 10.1002/adma.201602912
    [69]
    Li Y, Zhou W, Wang H, et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes[J]. Nature Nanotechnology,2012,7(6):394-400. doi: 10.1038/nnano.2012.72
    [70]
    Wang S, Zhang L, Xia Z, et al. BCN Graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2012,51(17):4209-4212. doi: 10.1002/anie.201109257
    [71]
    Jiang Z, Jiang Z J, Tian X, et al. Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2014,2(2):441-450. doi: 10.1039/C3TA13832A
    [72]
    Ye T N, Lv L B, Li X H, et al. Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst[J]. Angewandte Chemie-International Edition,2014,53(27):6905-6909. doi: 10.1002/anie.201403363
    [73]
    Gao J, Wang Y, Wu H, et al. Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2019,58(42):15089-15097. doi: 10.1002/anie.201907915
    [74]
    Zemek J, Houdkova J, Jiricek P, et al. Surface and in-depth distribution of sp2 and sp3 coordinated carbon atoms in diamond-like carbon films modified by argon ion beam bombardment during growth[J]. Carbon,2018,134:71-79. doi: 10.1016/j.carbon.2018.03.072
    [75]
    Zhu Y, Lin Y, Zhang B, et al. Nitrogen-doped annealed nanodiamonds with varied sp2/sp3 ratio as metal-free electrocatalyst for the oxygen reduction reaction[J]. Chemcatchem,2015,7(18):2840-2845. doi: 10.1002/cctc.201402930
    [76]
    Zhang J, Su D, Zhang A, et al. Nanocarbon as robust catalyst: Mechanistic insight into carbon-mediated catalysis[J]. Angewandte Chemie-International Edition,2007,46(38):7319-7323. doi: 10.1002/anie.200702466
    [77]
    Gao Y, Hu G, Zhong J, et al. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation[J]. Angewandte Chemie-International Edition,2013,52(7):2109-2113. doi: 10.1002/anie.201207918
    [78]
    Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science,2016,351(6271):361-365. doi: 10.1126/science.aad0832
    [79]
    Zhao Y, Wan J, Yao H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nature Chemistry,2018,10(9):924-931. doi: 10.1038/s41557-018-0100-1
    [80]
    Van Pham C, Klingele M, Britton B, et al. Tridoped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells[J]. Advanced Sustainable Systems,2017,1(5):1600038. doi: 10.1002/adsu.201600038
    [81]
    Lua Y, Wangb L, Preußc K, et al. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells[J]. Journal of Power Sources,2017,372:82-90. doi: 10.1016/j.jpowsour.2017.10.037
    [82]
    Chen Y Z, Wang C, Wu Z Y, et al. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials,2015,27(34):5010-5016. doi: 10.1002/adma.201502315
    [83]
    Zhu J, Xiao M, Song P, et al. Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells[J]. Nano Energy,2018,49:23-30. doi: 10.1016/j.nanoen.2018.04.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article Views(1337) PDF Downloads(147) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return