Volume 37 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
WANG Yong-zhi, TANG Zhi-hong, SHEN Shu-ling, YANG Jun-he. The influence of heteroatom doping on the performance of carbon-based electrocatalysts for oxygen evolution reactions. New Carbon Mater., 2022, 37(2): 321-337. doi: 10.1016/S1872-5805(22)60591-2
Citation: WANG Yong-zhi, TANG Zhi-hong, SHEN Shu-ling, YANG Jun-he. The influence of heteroatom doping on the performance of carbon-based electrocatalysts for oxygen evolution reactions. New Carbon Mater., 2022, 37(2): 321-337. doi: 10.1016/S1872-5805(22)60591-2

The influence of heteroatom doping on the performance of carbon-based electrocatalysts for oxygen evolution reactions

doi: 10.1016/S1872-5805(22)60591-2
Funds:  The research is supported by Basic Research Program of Shanghai, (19JC1410402), Scientific Research and Innovation Program of Shanghai Education Commission, (2019-01-07-00-07-E00015), the development fund for Shanghai talents
More Information
  • Author Bio:

    王勇智,硕士研究生. E-mail:847067037@qq.com

  • Corresponding author: TANG Zhi-Hong, Ph. D, Associate professor. E-mail: zhtang@usst.edu.cn; YANG Jun-he, Ph. D, Professor. E-mail: jhyang@usst.edu.cn
  • Received Date: 2021-08-20
  • Rev Recd Date: 2021-11-16
  • Available Online: 2021-12-17
  • Publish Date: 2022-03-30
  • Various types of energy conversion and storage devices have been developed in recent years to tackle with the problems of the over-consumption of fossil fuels and the environmental pollution they cause. The oxygen evolution reaction (OER) is the key half-cell reaction of many energy conversion and storage devices. The influences of the heteroatom doping of metal-free carbon-based electrocatalysts with N, P, S or B and co-doping with N/P or N/S on their performance as OER electrocatalysts are reviewed. Doping methods to prepare metal-free carbon-based electrocatalysts are summarized, and problems that need to be solved are discussed and challenges for future research are proposed.
  • loading
  • [1]
    Liu D, Dai L, Lin X, et al. Chemical approaches to carbon-based metal-free catalysts[J]. Advanced Materials,2019,31(13):1804863. doi: 10.1002/adma.201804863
    [2]
    Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science,2017,355(6321):4998. doi: 10.1126/science.aad4998
    [3]
    Chen X, Paul R, Dai L. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017,4(3):453-489. doi: 10.1093/nsr/nwx009
    [4]
    Hu C, Lin Y, Connell J W, et al. Carbon-based metal-free catalysts for energy storage and environmental remediation[J]. Advanced Materials,2019,31(13):1806128. doi: 10.1002/adma.201806128
    [5]
    Paul R, Du F, Dai L, et al. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices[J]. Advanced Materials,2019,31(13):1805598. doi: 10.1002/adma.201805598
    [6]
    Paul R, Zhu L, Chen H, et al. Recent advances in carbon-based metal-free electrocatalysts[J]. Advanced Materials,2019,31(31):1806403. doi: 10.1002/adma.201806403
    [7]
    Liu X, Dai L M. Carbon-based metal-free catalysts[J]. Nature Reviews Materials,2016,1(11):16064. doi: 10.1038/natrevmats.2016.64
    [8]
    Erdemir A, Ramirez G, Eryilmaz O L, et al. Carbon-based tribofilms from lubricating oils[J]. Nature,2016,536(7614):67-71. doi: 10.1038/nature18948
    [9]
    Xiang Z, Dai Q, Chen J F, et al. Edge functionalization of graphene and two-dimensional covalent organic polymers for energy conversion and storage[J]. Advanced Materials,2016,28(29):6253-6261. doi: 10.1002/adma.201505788
    [10]
    Zeng K, Zheng X J, Li C, et al. Recent advances in non-noble bifunctional oxygen Electrocatalysts toward large-scale production[J]. Advanced Functional Materials,2020,30(27):2000503. doi: 10.1002/adfm.202000503
    [11]
    Trotochaud L, Boettcher S W. Precise oxygen evolution catalysts: Status and opportunities[J]. Scripta Materialia,2014,74:25-32. doi: 10.1016/j.scriptamat.2013.07.019
    [12]
    Zhao Z, Li M, Zhang L, et al. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries[J]. Advanced Materials,2015,27(43):6834-6840. doi: 10.1002/adma.201503211
    [13]
    Jia Y, Zhang L, Du A, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced Materials,2016,28(43):9532-9538. doi: 10.1002/adma.201602912
    [14]
    Paul R, Dai L. Interfacial aspects of carbon composites[J]. Composite Interfaces,2018,25(5-7):539-605. doi: 10.1080/09276440.2018.1439632
    [15]
    Vlasov I L, Lebedev O I, Ralchenko V G, et al. Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition[J]. Advanced Materials,2007,19(22):4058-4602. doi: 10.1002/adma.200700442
    [16]
    Kumar B, Asadi M, Pisasale D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nature Communications,2013,4(1):2819. doi: 10.1038/ncomms3819
    [17]
    Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews,2015,115(11):4823-4892. doi: 10.1021/cr5003563
    [18]
    Zhang H, Lv R. Defect engineering of two-dimensional materials for efficient electrocatalysis[J]. Journal of Materiomics,2018,4(2):95-107. doi: 10.1016/j.jmat.2018.02.006
    [19]
    Wang L, Huang X, Xue J. Graphitic mesoporous carbon loaded with iron-nickel hydroxide for superior oxygen evolution reactivity[J]. Chemistry Sustainability Energy Materials,2016,9(14):1835-1842. doi: 10.1002/cssc.201600323
    [20]
    Gong M, Li Y, Wang H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society,2013,135(23):8452-8455. doi: 10.1021/ja4027715
    [21]
    Liu Z, Zhang G, Zhang K, et al. Facile dispersion of nanosized NiFeP for highly effective catalysis of oxygen evolution reaction[J]. ACS Sustainable Chemistry & Engineering,2018,6(6):7206-7211. doi: 10.1021/acssuschemeng.8b00471
    [22]
    Du Y, Ding X, Han M, et al. Morphology and composition regulation of FeCoNi prussian blue analogues to advance in the catalytic performances of the derivative ternary transition-metal phosphides for OER[J]. ChemCatChem,2020,12(17):4339-4345. doi: 10.1002/cctc.202000466
    [23]
    Dutta A, Pradhan N. Developments of metal phosphides as efficient OER precatalysts[J]. Journal of Physical Chemistry Letters,2017,8(1):144-152. doi: 10.1021/acs.jpclett.6b02249
    [24]
    Hu C, Dai L. Doping of carbon materials for metal-free electrocatalysis[J]. Advanced Materials,2019,31(7):1804672. doi: 10.1002/adma.201804672
    [25]
    Wu H, Geng J, Ge H T, et al. Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts[J]. Advanced Energy Materials,2016,6(20):1600794. doi: 10.1002/aenm.201600794
    [26]
    Cui H, Zhou Z, Jia D. Heteroatom-doped graphene as electrocatalysts for air cathodes[J]. Materials Horizons,2017,4(1):7-19. doi: 10.1039/C6MH00358C
    [27]
    Liu Y, Gao L. A study of the electrical properties of carbon nanotube-NiFe2O4 composites: Effect of the surface treatment of the carbon nanotubes[J]. Carbon,2005,43(1):47-52. doi: 10.1016/j.carbon.2004.08.019
    [28]
    Tang C, Zhang Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects[J]. Advanced Materials,2017,29(13):1604103. doi: 10.1002/adma.201604103
    [29]
    Pei Z, Li H, Huang Y, et al. Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst[J]. Energy & Environmental Science,2017,10(3):742-749. doi: 10.1039/c6ee03265f
    [30]
    Barakat N A M. CoNi/CNTs composite as effective and stable electrode for oxygen evaluation reaction in alkaline media[J]. International Journal of Hydrogen Energy,2018,43(18):8623-8631. doi: 10.1016/j.ijhydene.2018.03.146
    [31]
    Xu J, Zhang H, Xu P, et al. In situ construction of hierarchical Co/MnO@graphite carbon composites for highly supercapacitive and OER electrocatalytic performances[J]. Nanoscale,2018,10(28):13702-13712. doi: 10.1039/C8NR01526K
    [32]
    Shang S S, Gao S. Heteroatom-enhanced metal-free catalytic performance of carbocatalysts for organic transformations[J]. ChemCatChem,2019,11(16):3730-3744. doi: 10.1002/cctc.201900336
    [33]
    Liu D L, Tong Y Y, Yan X, et al. Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries[J]. Batteries & Supercaps,2019,2(9):743-765. doi: 10.1002/batt.201900052
    [34]
    Tang C, Wang H F, Zhang Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis[J]. Accounts of Chemical Research,2018,51(4):881-889. doi: 10.1021/acs.accounts.7b00616
    [35]
    Yang D, Zhang L, Yan X, et al. Recent progress in oxygen electrocatalysts for zinc-air batteries[J]. Small Methods,2017,1(12):1700209. doi: 10.1002/smtd.201700209
    [36]
    Li W, Fang R, Xia Y, et al. Multiscale porous carbon nanomaterials for applications in advanced rechargeable batteries[J]. Batteries & Supercaps,2019,2(1):9-36. doi: 10.1002/batt.201800067
    [37]
    Wang X, Sun G, Routh P, et al. Heteroatom-doped graphene materials: Syntheses, properties and applications[J]. Chemical Society Reviews,2014,43(20):7067-7098. doi: 10.1039/C4CS00141A
    [38]
    Guo Dong hui, Riku Shibuya, Chisato Akiba, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science,2016,351(6271):361-365. doi: 10.1126/science.aad0832
    [39]
    Li X, Fang Y, Zhao S, et al. Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction[J]. Journal of Materials Chemistry A,2016,4(34):13133-13141. doi: 10.1039/C6TA04187F
    [40]
    Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [41]
    Zhang J, Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting[J]. Angewandte Chemie International Edition,2016,55(42):13296-13300. doi: 10.1002/anie.201607405
    [42]
    Hu C, Dai L. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution[J]. Advanced Materials,2017,29(9):1604942. doi: 10.1002/adma.201604942
    [43]
    Zhang Y, Fan X L, Jian J H, et al. A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes[J]. Energy & Environmental Science,2017,10(11):2312-2317. doi: 10.1039/c7ee01702b
    [44]
    Wu H, Wang J, Yan J, et al. Mof-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts[J]. Nanoscale,2019,11(42):20144-20150. doi: 10.1039/C9NR05744G
    [45]
    Lu J J, Li Y, Wu S, et al. Oxygen species on nitrogen-doped carbon nanosheets as efficient active sites for multiple electrocatalysis[J]. ACS Applied Materials & Interfaces,2018,10(14):11678-11688. doi: 10.1021/acsami.8b00240
    [46]
    Jiang H, Gu J, Zheng X, et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER[J]. Energy & Environmental Science,2019,12(1):322-333. doi: 10.1039/c8ee03276a
    [47]
    Liu Q, Wang Y, Dai L, et al. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries[J]. Advanced Materials,2016,28(15):3000-3006. doi: 10.1002/adma.201506112
    [48]
    Wang Q, Ji Y, Lei Y, et al. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries[J]. ACS Energy Letters,2018,3(5):1183-1191. doi: 10.1021/acsenergylett.8b00303
    [49]
    Wu X, Radovic L R. Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus[J]. Carbon,2006,44(1):141-151. doi: 10.1016/j.carbon.2005.06.038
    [50]
    Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology,2015,10(5):444-452. doi: 10.1038/nnano.2015.48
    [51]
    Wang M, Wang W, Qian T, et al. Oxidizing vacancies in nitrogen-doped carbon enhance air-cathode activity[J]. Advanced Materials,2019,31(5):1803339. doi: 10.1002/adma.201803339
    [52]
    Parvin N, Mandal T K. Dually emissive P, N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice[J]. Microchimica Acta,2017,184(4):1117-1125. doi: 10.1007/s00604-017-2108-4
    [53]
    Dhakshinamoorthy A, Primo A, Concepcion P, et al. Doped graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic hydrocarbons, cyclooctane and styrene[J]. Chemistry-A European Journal,2013,19(23):7547-7554. doi: 10.1002/chem.201300653
    [54]
    Long J L, Xie X Q, Xu J, et al. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols[J]. Acs Catalysis,2012,2(4):622-631. doi: 10.1021/cs3000396
    [55]
    Ma T Y, Ran J, Dai S, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes[J]. Angewandte Chemie-International Edition,2015,54(15):4646-4650. doi: 10.1002/anie.201411125
    [56]
    Wang H M, Wang H X, Chen Y, et al. Phosphorus-doped graphene and (8, 0) carbon nanotube: Structural, electronic, magnetic properties, and chemical reactivity[J]. Applied Surface Science,2013,273:302-309. doi: 10.1016/j.apsusc.2013.02.035
    [57]
    Zhang X L, Lu Z S, Fu Z M, et al. The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study[J]. Journal of Power Sources,2015,276:222-229. doi: 10.1016/j.jpowsour.2014.11.105
    [58]
    Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society,2012,134(39):16127-16130. doi: 10.1021/ja306376s
    [59]
    Zong L, Wu W, Liu S, et al. Metal-free, active nitrogen-enriched, efficient bifunctional oxygen electrocatalyst for ultrastable zinc-air batteries[J]. Energy Storage Materials,2020,27:514-521. doi: 10.1016/j.ensm.2019.12.013
    [60]
    Zhu P, Gao J, Chen X, et al. An efficient metal-free bifunctional oxygen electrocatalyst of carbon co-doped with fluorine and nitrogen atoms for rechargeable Zn-air battery[J]. International Journal of Hydrogen Energy,2020,45(16):9512-9521. doi: 10.1016/j.ijhydene.2020.01.131
    [61]
    Xiao X, Li X, Wang Z, et al. Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries[J]. Applied Catalysis B:Environmental,2020,265:118603. doi: 10.1016/j.apcatb.2020.118603
    [62]
    Tu N D K, Park S O, Park J, et al. Pyridinic-nitrogen-containing carbon cathode: Efficient electrocatalyst for seawater batteries[J]. ACS Applied Energy Materials,2020,3(2):1602-1608. doi: 10.1021/acsaem.9b02087
    [63]
    Sim Y, Kim S J, Janani G, et al. The synergistic effect of nitrogen and fluorine co-doping in graphene quantum dot catalysts for full water splitting and supercapacitor[J]. Applied Surface Science,2020,507:145157. doi: 10.1016/j.apsusc.2019.145157
    [64]
    Ji H, Wang M, Liu S, et al. Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries[J]. Electrochimica Acta,2020,334:135562. doi: 10.1016/j.electacta.2019.135562
    [65]
    Guo Y, Yao S, Gao L, et al. Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn-air batteries[J]. Journal of Materials Chemistry A,2020,8(8):4386-4395. doi: 10.1039/C9TA12762C
    [66]
    Zhou Z, Chen A, Fan X, et al. Hierarchical porous N-P-coupled carbons as metal-free bifunctional electro-catalysts for oxygen conversion[J]. Applied Surface Science,2019,464:380-387. doi: 10.1016/j.apsusc.2018.09.095
    [67]
    Peng X, Zhang L, Chen Z, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes[J]. Advanced Materials,2019,31(16):1900341. doi: 10.1002/adma.201900341
    [68]
    Chang Y, Nie A, Yuan S, et al. Liquid-exfoliation of S-doped black phosphorus nanosheets for enhanced oxygen evolution catalysis[J]. Nanotechnology,2019,30(3):035701. doi: 10.1088/1361-6528/aaeadd
    [69]
    Zhang C, Bhoyate S, Hyatt M, et al. Nitrogen-doped flexible carbon cloth for durable metal free electrocatalyst for overall water splitting[J]. Surface and Coatings Technology,2018,347:407-413. doi: 10.1016/j.surfcoat.2018.05.021
    [70]
    Yue X, Huang S L, Cai J J, et al. Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting[J]. Journal of Materials Chemistry A,2017,5(17):7784-7790. doi: 10.1039/C7TA01957B
    [71]
    Shinde S S, Lee C H, Sami A, et al. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries[J]. ACS Nano,2017,11(1):347-357. doi: 10.1021/acsnano.6b05914
    [72]
    Liu Z, Zhao Z, Wang Y, et al. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis[J]. Advanced Materials,2017,29(18):1606207. doi: 10.1002/adma.201606207
    [73]
    Faisal S N, Haque E, Noorbehesht N, et al. Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER[J]. RSC Advances,2017,7(29):17950-17958. doi: 10.1039/C7RA01355H
    [74]
    Bayazit M K, Moniz S J A, Coleman K S. Gram-scale production of nitrogen doped graphene using a 1, 3-dipolar organic precursor and its utilisation as a stable, metal free oxygen evolution reaction catalyst[J]. Chemical communications (Cambridge, England),2017,53(55):7748-7751. doi: 10.1039/C7CC04044J
    [75]
    Zhang C, Wang B, Shen X, et al. A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nano Energy,2016,30:503-510. doi: 10.1016/j.nanoen.2016.10.051
    [76]
    Li J C, Hou P X, Zhao S Y, et al. A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Energy & Environmental Science,2016,9(10):3079-3084. doi: 10.1039/c6ee02169g
    [77]
    Li R, Wei Z, Gou X. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution[J]. ACS Catalysis,2015,5(7):4133-4142. doi: 10.1021/acscatal.5b00601
    [78]
    Liu Z W, Ai J, Sun M M, et al. Phosphorous-doped graphite layers with outstanding electrocatalytic activities for the oxygen and hydrogen evolution reactions in water electrolysis[J]. Advanced Functional Materials,2020,30(12):1910741. doi: 10.1002/adfm.201910741
    [79]
    Xiao Z, Huang X, Xu L, et al. Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction[J]. Chemical Communications,2016,52(88):13008-13011. doi: 10.1039/C6CC07217H
    [80]
    Lei W, Deng Y P, Li G, et al. Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries[J]. Acs Catalysis,2018,8(3):2464-2472. doi: 10.1021/acscatal.7b02739
    [81]
    Wu J, Jin C, Yang Z, et al. Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction[J]. Carbon,2015,82:562-571. doi: 10.1016/j.carbon.2014.11.008
    [82]
    Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie-International Edition,2011,50(14):3257-3261. doi: 10.1002/anie.201006768
    [83]
    Liu Z, Peng F, Wang H, et al. Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O2 reduction[J]. Journal of Natural Gas Chemistry,2012,21(3):257-264. doi: 10.1016/S1003-9953(11)60362-9
    [84]
    Amiinu I S, Zhang J, Kou Z K, et al. Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution[J]. ACS Applied Materials & Interfaces,2016,8(43):29408-29418. doi: 10.1021/acsami.6b08719
    [85]
    Zhao J, Liu Y, Quan X, et al. Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: The enhanced performance by sulfur doping[J]. Electrochimica Acta,2016,204:169-175. doi: 10.1016/j.electacta.2016.04.034
    [86]
    Ito Y, Cong W, Fujita T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction[J]. Angewandte Chemie-International Edition,2015,54(7):2131-2136. doi: 10.1002/anie.201410050
    [87]
    Abdelkader-Fernandez V K, Domingo-Garcia M, Lopez-Garzon F J, et al. Expanding graphene properties by a simple S-doping methodology based on cold CS2 plasma[J]. Carbon,2019,144:269-279. doi: 10.1016/j.carbon.2018.12.045
    [88]
    Lee J, Noh S, Pham N D, et al. Top-down synthesis of S-doped graphene nanosheets by electrochemical exfoliation of graphite: Metal-free bifunctional catalysts for oxygen reduction and evolution reactions[J]. Electrochimica Acta,2019,313:1-9. doi: 10.1016/j.electacta.2019.05.015
    [89]
    Tang Y B, Yin L C, Yang Y, et al. Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma[J]. ACS Nano,2012,6(3):1970-1978. doi: 10.1021/nn3005262
    [90]
    Wang H, Zhou Y, Wu D, et al. Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition[J]. Small,2013,9(8):1316-1320. doi: 10.1002/smll.201203021
    [91]
    Balaji S S, Karnan M, Anandhaganesh P, et al. Performance evaluation of B-doped graphene prepared via two different methods in symmetric supercapacitor using various electrolytes[J]. Applied Surface Science,2019,491:560-569. doi: 10.1016/j.apsusc.2019.06.151
    [92]
    Cai M Y, Tang C M, Zhang Q Y. Optimized Li storage performance of B, N doped graphyne as Li-ion battery anode materials[J]. Acta Physica Sinica,2019,68(21):213601. doi: 10.7498/aps.68.20191161
    [93]
    Chaleawpong R, Promros N, Charoenyuenyao P, et al. C-V-f, G-V-f and Z ''-Z ' characteristics of n-type Si/B-doped p-type ultrananocrystalline diamond heterojunctions formed via pulsed laser deposition[J]. Journal of Nanoscience and Nanotechnology,2019,19(10):6812-6820. doi: 10.1166/jnn.2019.17124
    [94]
    Gao X, Zhou Y, Cheng Z, et al. Doping sp-hybridized B atoms in graphyne supported single cobalt atoms for hydrogen evolution electrocatalysis[J]. International Journal of Hydrogen Energy,2019,44(50):27421-27428. doi: 10.1016/j.ijhydene.2019.08.195
    [95]
    Lei P, Zhou Y, Zhu R, et al. Facile synthesis of iron phthalocyanine functionalized N, B-doped reduced graphene oxide nanocomposites and sensitive electrochemical detection for glutathione[J]. Sensors and Actuators B-Chemical,2019,297:126756. doi: 10.1016/j.snb.2019.126756
    [96]
    Roselin L S, Patel N, Khayyat S A. Codoped g-C3N4 nanosheet for degradation of organic pollutants from oily wastewater[J]. Applied Surface Science,2019,494:952-958. doi: 10.1016/j.apsusc.2019.07.077
    [97]
    Thorat N, Yadav A, Yadav M, et al. Ag loaded B-doped-g C3N4 nanosheet with efficient properties for photocatalysis[J]. Journal of Environmental Management,2019,247:57-66. doi: 10.1016/j.jenvman.2019.06.043
    [98]
    Usachov D Y, Tarasov A V, Matsui F, et al. Decoding the structure of interfaces and impurities in 2D materials by photoelectron holography[J]. 2D Materials,2019,6(4):045046. doi: 10.1088/2053-1583/ab3ea8
    [99]
    Wang Y, Wu Q, Mao J, et al. Lithium and calcium decorated triphenylene-graphdiyne as potential high-capacity hydrogen storage medium: A first-principles prediction[J]. Applied Surface Science,2019,494:763-770. doi: 10.1016/j.apsusc.2019.07.200
    [100]
    Yang Z, Xie L, Chen Y, et al. Effective boron doping in three-dimensional nitrogen-containing carbon foam with mesoporous structure for enhanced all-solid-state supercapacitor performance[J]. Applied Surface Science,2019,493:1205-1214. doi: 10.1016/j.apsusc.2019.07.150
    [101]
    Ren X D, Zhu J Z, Du F M, et al. B-doped graphene as catalyst to improve charge rate of lithium air battery[J]. Journal of Physical Chemistry C,2014,118(39):22412-22418. doi: 10.1021/jp505876z
    [102]
    Yan Q, Huang G F, Li D F, et al. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g- C3N4 nanosheets[J]. Journal of Materials Science & Technology,2018,34(12):2515-2520. doi: 10.1016/j.jmst.2017.06.018
    [103]
    Qu K G, Zheng Y, Dai S, et al. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution[J]. Nano Energy,2016,19:373-381. doi: 10.1016/j.nanoen.2015.11.027
    [104]
    Zhang J, Qu L, Shi G, et al. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions[J]. Angewandte Chemie International Edition,2016,55(6):2230-2234. doi: 10.1002/anie.201510495
    [105]
    Chai G L, Qiu K P, Qiao M, et al. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N co-doped graphene frameworks[J]. Energy & Environmental Science,2017,10(5):1186-1195. doi: 10.1039/c6ee03446b
    [106]
    Li J C, Hou P X, Cheng M, et al. Carbon nanotube encapsulated in nitrogen and phosphorus co-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Carbon,2018,139:156-163. doi: 10.1016/j.carbon.2018.06.023
    [107]
    Gao Y, Xiao Z, Kong D, et al. N, P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis[J]. Nano Energy,2019,64:103879. doi: 10.1016/j.nanoen.2019.103879
    [108]
    Yuan Z, Li J, Yang M, et al. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: Dual modulation roles of directional interfacial charge transfer[J]. Journal of the American Chemical Society,2019,141(12):4972-4979. doi: 10.1021/jacs.9b00154
    [109]
    Rivera L M, Fajardo S, Arevalo M D, et al. S- and N-doped graphene nanomaterials for the oxygen reduction reaction[J]. Catalysts,2017,7(9):278. doi: 10.3390/catal7090278
    [110]
    Guo J, Yu Y, Ma J, et al. Facile route to achieve N, S-codoped carbon as bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Journal of Alloys and Compounds,2020,821:153484. doi: 10.1016/j.jallcom.2019.153484
    [111]
    Rivera-Gavidia L M, Luis-Sunga M, Bousa M, et al. S- and N-doped graphene-based catalysts for the oxygen evolution reaction[J]. Electrochimica Acta,2020,340:135975. doi: 10.1016/j.electacta.2020.135975
    [112]
    Altalhi T, Mezni A, Aldalbahi A, et al. Fabrication and characterisation of sulfur and phosphorus (S/P) co-doped carbon nanotubes[J]. Chemical Physics Letters,2016,658:92-96. doi: 10.1016/j.cplett.2016.06.028
    [113]
    Patel M A, Luo F, Savaram K, et al. P and S dual-doped graphitic porous carbon for aerobic oxidation reactions: Enhanced catalytic activity and catalytic sites[J]. Carbon,2017,114:383-392. doi: 10.1016/j.carbon.2016.11.064
    [114]
    Zhang X, Zhang X, Xiang X, et al. Nitrogen and phosphate co-doped graphene as efficient bifunctional electrocatalysts by precursor modulation strategy for oxygen reduction and evolution reactions[J]. ChemElectroChem,2021,8(17):3262-3272. doi: 10.1002/celc.202100599
    [115]
    Kim J, Park J, Lee J, et al. Biomass-derived P, N self-doped hard carbon as bifunctional oxygen electrocatalyst and anode material for seawater batteries[J]. Advanced Functional Materials,2021,31(22):2010882. doi: 10.1002/adfm.202010882
    [116]
    Ma L L, Hu X, Liu W J, et al. Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts[J]. Chemosphere,2021,278:130508. doi: 10.1016/j.chemosphere.2021.130508
    [117]
    Zhao Y, Yang N, Yao H, et al. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction[J]. Journal of the American Chemical Society,2019,141(18):7240-7244. doi: 10.1021/jacs.8b13695
    [118]
    Wang D W, Su D S. Heterogeneous nanocarbon materials for oxygen reduction reaction[J]. Energy & Environmental Science,2014,7(2):576-591. doi: 10.1039/c3ee43463j
    [119]
    Zhao Z, Xia Z. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions[J]. ACS Catalysis,2016,6(3):1553-1558. doi: 10.1021/acscatal.5b02731
    [120]
    Zhou S, Zang J, Gao H, et al. Deflagration method synthesizing N, S co-doped oxygen-functionalized carbons as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. Carbon,2021,181:234-245. doi: 10.1016/j.carbon.2021.05.034
    [121]
    Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition,2012,51(46):11496-11500. doi: 10.1002/anie.201206720
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(1277) PDF Downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return