Volume 37 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
ZENG Xu, ZHU Bin-bin, QIU Wei, LI Wei-li, ZHENG Xiao-hui, XU Bin. A review of the preparation and applications of wrinkled graphene oxide. New Carbon Mater., 2022, 37(2): 290-302. doi: 10.1016/S1872-5805(22)60594-8
Citation: ZENG Xu, ZHU Bin-bin, QIU Wei, LI Wei-li, ZHENG Xiao-hui, XU Bin. A review of the preparation and applications of wrinkled graphene oxide. New Carbon Mater., 2022, 37(2): 290-302. doi: 10.1016/S1872-5805(22)60594-8

A review of the preparation and applications of wrinkled graphene oxide

doi: 10.1016/S1872-5805(22)60594-8
More Information
  • Corresponding author: ZHENG Xiao-hui, Ph. D, Associate Professor. E-mail: zheng_nudt@163.com; XU Bin, Ph. D, Professor. E-mail: xubin@mail.buct.edu.cn
  • Received Date: 2021-08-31
  • Accepted Date: 2021-12-23
  • Rev Recd Date: 2021-12-22
  • Available Online: 2022-01-05
  • Publish Date: 2022-03-30
  • Graphene oxide (GO), as a derivative of two-dimensional graphene, has the characteristics of simple preparation, low cost, abundant functional groups and easy modification. The introduction of wrinkles in the two-dimensional GO nanosheets changes the morphology and structure, and thus can give GO special physical, chemical, biological and other characteristics, making it possible for use in many fields. Research progress on the preparation and applications of wrinkled GO (WGO) in recent years is reviewed, focusing on the preparation principles and characteristics of WGO, including pre-stretching, the solvent induction method, rapid drying, magnetic field induction, surfactant templating, electrophoretic deposition and pH adjustment methods. The applications of WGO in smart devices, biomedicine and water treatment are summarized. Current challenges in the preparation and use of WGO are discussed, and future development prospects are given.
  • loading
  • [1]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [2]
    Kamat P V. Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support[J]. The Journal of Physical Chemistry Letters,2009,1(2):520-527.
    [3]
    Farghali A A, Bahgat M, El Rouby W M A, et al. Preparation, decoration and characterization of graphene sheets for methyl green adsorption[J]. Journal of Alloys and Compounds,2013,555:193-200. doi: 10.1016/j.jallcom.2012.11.190
    [4]
    Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. doi: 10.1002/adma.201001068
    [5]
    Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chemical Reviews,2012,112(11):6027-6053. doi: 10.1021/cr300115g
    [6]
    Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition,2009,48(42):7752-7777. doi: 10.1002/anie.200901678
    [7]
    Zhu X Q, Zhang J Y, Xie Q, et al. High-sensitivity and ultrafast-response ethanol sensors based on graphene oxide[J]. ACS Applied Materials & Interfaces,2020,12(34):38708-38713.
    [8]
    Liu Y, Ding J, Wang Q Q, et al. Research progress on the biomedical uses of graphene and its derivatives[J]. New Carbon Materials,2021,36(4):779-793. doi: 10.1016/S1872-5805(21)60073-2
    [9]
    Zu R A, Ing K, Rachel S Y L, et al. Preparation of 3D graphene-carbon nanotubes-magnetic hybrid aerogels for dye adsorption[J]. New Carbon Materials,2021,36(3):1-11.
    [10]
    Meng X H, Li M L, Kang Z, et al. Mechanics of self-folding of single-layer graphene[J]. Journal of Physics D:Applied Physics,2013,46(5):055308. doi: 10.1088/0022-3727/46/5/055308
    [11]
    Liu N, Pan Z H, Fu L, et al. The origin of wrinkles on transferred graphene[J]. Nano Research,2011,4(10):996. doi: 10.1007/s12274-011-0156-3
    [12]
    Shen X, Lin X, Yousefi N, et al. Wrinkling in graphene sheets and graphene oxide papers[J]. Carbon,2014,66:84-92. doi: 10.1016/j.carbon.2013.08.046
    [13]
    Lin J, Li P, Liu Y, et al. The origin of the sheet size predicament in graphene macroscopic papers[J]. ACS Nano,2021,15(3):4824-4832. doi: 10.1021/acsnano.0c09503
    [14]
    Baik S, Park Y, Lee T J, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J]. Nature,2017,546(7658):396-400. doi: 10.1038/nature22382
    [15]
    Erb R M, Libanori R, Rothfuchs N, et al. Composites reinforced in three dimensions by using low magnetic fields[J]. Science,2012,335(6065):199-204. doi: 10.1126/science.1210822
    [16]
    Bae W G, Kim H N, Kim D, et al. 25th anniversary article: Scalable multiscale patterned structures inspired by nature: The role of hierarchy[J]. Advanced Materials,2014,26(5):675-700. doi: 10.1002/adma.201303412
    [17]
    Ge D, Wu G, Yang L, et al. Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting Carystoides escalantei butterflies[J]. Proceedings of the National Academy of Sciences,2017,114(28):7379-7384. doi: 10.1073/pnas.1701017114
    [18]
    Bai K K, Zhou Y, Zheng H, et al. Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer[J]. Physical Review Letters,2014,113(8):086102. doi: 10.1103/PhysRevLett.113.086102
    [19]
    Lee J K, Yamazaki S, Yun H, et al. Modification of electrical properties of graphene by substrate-induced nanomodulation[J]. Nano Letters,2013,13(8):3494-3500. doi: 10.1021/nl400827p
    [20]
    Wang C, Liu Y, Li L, et al. Anisotropic thermal conductivity of graphene wrinkles[J]. Nanoscale,2014,6(11):5703-5707. doi: 10.1039/C4NR00423J
    [21]
    Chen W, Gui X, Liang B, et al. Controllable fabrication of large-area wrinkled graphene on a solution surface[J]. ACS Applied Materials & Interfaces,2016,8(17):10977-10984.
    [22]
    Jin Y, Wang Q, Taynton P, et al. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers[J]. Accounts of Chemical Research,2014,47(5):1575-1586. doi: 10.1021/ar500037v
    [23]
    Yang Y, Ding X, Urban M W. Chemical and physical aspects of self-healing materials[J]. Progress in Polymer Science,2015,49:34-59.
    [24]
    Li Y, Dai S, John J, et al. Superhydrophobic surfaces from hierarchically structured wrinkled polymers[J]. ACS Applied Materials & Interfaces,2013,5(21):11066-11073.
    [25]
    Li M, Hakimi N, Perez R, et al. Microarchitecture for a three‐dimensional wrinkled surface platform[J]. Advanced Materials,2015,27(11):1880-1886. doi: 10.1002/adma.201405851
    [26]
    Dou X Q, Zhang D, Feng C, et al. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion[J]. ACS Nano,2015,9(11):10664-10672. doi: 10.1021/acsnano.5b04231
    [27]
    Hou H, Yin J, Jiang X. Smart patterned surface with dynamic wrinkles[J]. Accounts of Chemical Research,2019,52(4):1025-1035. doi: 10.1021/acs.accounts.8b00623
    [28]
    Yin D, Feng J, Ma R, et al. Stability improved stretchable metallic gratings with tunable grating period in submicron scale[J]. Journal of Lightwave Technology,2015,33(15):3327-3331. doi: 10.1109/JLT.2015.2430878
    [29]
    Xie K, Wei B. Materials and structures for stretchable energy storage and conversion devices[J]. Advanced Materials,2014,26(22):3592-3617. doi: 10.1002/adma.201305919
    [30]
    Li F, Hou H, Yin J, et al. Near-infrared light–responsive dynamic wrinkle patterns[J]. Science Advances,2018,4(4):eaar5762. doi: 10.1126/sciadv.aar5762
    [31]
    Hong S H, Shen T Z, Song J K. Water front recession and the formation of various types of wrinkles in dried graphene oxide droplets[J]. Carbon,2016,105:297-304. doi: 10.1016/j.carbon.2016.04.053
    [32]
    Wang C G, Lan L, Liu Y P, et al. Defect-guided wrinkling in graphene[J]. Computational Materials Science,2013,77:250-253. doi: 10.1016/j.commatsci.2013.04.051
    [33]
    Naumov I I, Bratkovsky A M. Gap opening in graphene by simple periodic inhomogeneous strain[J]. Physical Review B,2011,84(24):245444. doi: 10.1103/PhysRevB.84.245444
    [34]
    Duan W H, Gong K, Wang Q. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear[J]. Carbon,2011,49(9):3107-3112. doi: 10.1016/j.carbon.2011.03.033
    [35]
    Chen X M, Ren Y K, Jiang T Y, et al. High-throughput and multimodal separation of microbeads using cyclical induced-charge electro-osmotic vortices and its application in size fractionation of crumpled graphene oxide balls[J]. Applied Materials Today,2020,19:100545. doi: 10.1016/j.apmt.2019.100545
    [36]
    Zang J F, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene[J]. Nature Materials,2013,12(4):321-325. doi: 10.1038/nmat3542
    [37]
    Liu X, Liu Y. Radial instabilities of viscoelastic thin film-elastic substrate system triggered by local pre-stretch: A theoretical solution[J]. Mechanics of Materials,2020,143:103315. doi: 10.1016/j.mechmat.2020.103315
    [38]
    Chen Y C, Crosby A J. High aspect ratio wrinkles via substrate prestretch[J]. Advanced Materials,2014,26(32):5626-5631. doi: 10.1002/adma.201401444
    [39]
    Ma Y, Jang K I, Wang L, et al. Design of strain‐limiting substrate materials for stretchable and flexible electronics[J]. Advanced Functional Materials,2016,26(29):5345-5351. doi: 10.1002/adfm.201600713
    [40]
    Cao C Y, Chan H F, Zang J F, et al. Harnessing localized ridges for high‐aspect‐ratio hierarchical patterns with dynamic tunability and multifunctionality[J]. Advanced Materials,2014,26(11):1763-1770. doi: 10.1002/adma.201304589
    [41]
    Chen W J, Gui X C, Yang L L, et al. Wrinkling of two-dimensional materials: methods, properties and applications[J]. Nanoscale Horizons,2019,4(2):291-320. doi: 10.1039/C8NH00112J
    [42]
    Wang Z, Tonderys D, Leggett S E, et al. Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology[J]. Carbon,2016,97:14-24. doi: 10.1016/j.carbon.2015.03.040
    [43]
    张超, 刘颖, 刘天西, 等. 一种可拉伸氧化石墨烯的制备方法[P]. CN109252358A, 2019-01-22.

    Zhang C, Liu Y, Liu T X, et al. A preparation method of stretchable graphene oxide[P]. CN109252358A, 2019-01-22.
    [44]
    Xu J S, Chen J, Zhang M, et al. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes[J]. Advanced Electronic Materials,2016,2(6):1600022. doi: 10.1002/aelm.201600022
    [45]
    Thomas A V, Andow B C, Suresh S, et al. Controlled crumpling of graphene oxide films for tunable optical transmittance[J]. Advanced Materials,2015,27(21):3256-3265. doi: 10.1002/adma.201405821
    [46]
    Xu Z, Gao C. Graphene fiber: a new trend in carbon fibers[J]. Materials Today,2015,18(9):480-492. doi: 10.1016/j.mattod.2015.06.009
    [47]
    Wen X, Garland C W, Hwa T, et al. Crumpled and collapsed conformation in graphite oxide membranes[J]. Nature,1992,355(6359):426-428. doi: 10.1038/355426a0
    [48]
    Xiao Y H, Xu Z, Liu Y J, et al. Sheet collapsing approach for rubber-like graphene papers[J]. ACS Nano,2017,11(8):8092-8102. doi: 10.1021/acsnano.7b02915
    [49]
    高超, 彭蠡, 许震, 等. 一种高度褶皱的氧化石墨烯膜的制备方法及其应用[P]. CN108358197A, 2018-08-03.

    Gao C, Peng L, Xu Z, et al. A highly fold preparation methods and applications of graphene oxide film [P]. CN108358197A, 2018-08-03
    [50]
    Kang Y, Qiu R S, Jian P, et al. The role of nanowrinkles in mass transport across graphene‐based membranes[J]. Advanced Functional Materials,2020,30(32):2003159. doi: 10.1002/adfm.202003159
    [51]
    Konios D, Stylianakis M M, Stratakis E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of Colloid and Interface Science,2014,430:108-112. doi: 10.1016/j.jcis.2014.05.033
    [52]
    Parviz D, Metzler S D, Das S, et al. Tailored crumpling and unfolding of spray‐dried pristine graphene and graphene oxide sheets[J]. Small,2015,11(22):2661-2668. doi: 10.1002/smll.201403466
    [53]
    Liu Q, Huang J, Xu B. Evaporation-driven crumpling and assembling of two-dimensional (2D) materials: A rotational spring-mechanical slider model[J]. Journal of the Mechanics and Physics of Solids,2019,133:103722. doi: 10.1016/j.jmps.2019.103722
    [54]
    Wang W N, Jiang Y, Biswas P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship[J]. The Journal of Physical Chemistry Letters,2012,3(21):3228-3233. doi: 10.1021/jz3015869
    [55]
    Kavadiya S, Raliya R, Schrock M, et al. Crumpling of graphene oxide through evaporative confinement in nanodroplets produced by electrohydrodynamic aerosolization[J]. Journal of Nanoparticle Research,2017,19(2):43. doi: 10.1007/s11051-017-3738-5
    [56]
    Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society,2009,131(3):1043-1049. doi: 10.1021/ja806262m
    [57]
    Whitby R L D, Gun’ko V M, Korobeinyk A, et al. Driving forces of conformational changes in single-layer graphene oxide[J]. ACS Nano,2012,6(5):3967-3973. doi: 10.1021/nn3002278
    [58]
    Whitby R L D, Korobeinyk A, Gun'Ko V M, et al. pH-driven physicochemical conformational changes of single-layer graphene oxide[J]. Chemical Communications,2011,47(34):9645-9647. doi: 10.1039/c1cc13725e
    [59]
    Cote L J, Kim J, Zhang Z, et al. Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties[J]. Soft Matter,2010,6(24):6096-6101. doi: 10.1039/c0sm00667j
    [60]
    Tong M Q, Cao J D, Chen X P, et al. Self-assembly of chemically modified graphene sheets in an external magnetic field[J]. RSC Advances,2019,9(34):19457-19464. doi: 10.1039/C9RA01807G
    [61]
    Kim H, Jang Y R, Yoo J, et al. Morphology control of surfactant-assisted graphene oxide films at the liquid–gas interface[J]. Langmuir,2014,30(8):2170-2177. doi: 10.1021/la403255q
    [62]
    Qiu J J, Geng H, Wang D H, et al. Layer-number dependent antibacterial and osteogenic behaviors of graphene oxide electrophoretic deposited on titanium[J]. ACS Applied Materials & Interfaces,2017,9(14):12253-12263.
    [63]
    Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano,2008,2(3):463-470. doi: 10.1021/nn700375n
    [64]
    Jung J H, Cheon D S, Liu F, et al. A graphene oxide based immuno-biosensor for pathogen detection.[J]. Angew Chem Int Ed Engl,2010,49(33):5708-5711. doi: 10.1002/anie.201001428
    [65]
    Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications[J]. Biosensors and Bioelectronics,2018,103:113-129. doi: 10.1016/j.bios.2017.12.031
    [66]
    Ali M A, Hong W, Oren S, et al. Tunable bioelectrodes with wrinkled-ridged graphene oxide surfaces for electrochemical nitrate sensors[J]. RSC Advances,2016,6(71):67184-67195. doi: 10.1039/C6RA09621B
    [67]
    Soundappan T, Haddad K, Kavadiya S, et al. Crumpled graphene oxide decorated SnO2 nanocolumns for the electrochemical detection of free chlorine[J]. Applied Nanoscience,2017,7(8):645-653. doi: 10.1007/s13204-017-0603-x
    [68]
    Wang G F, Qin H, Gao X, et al. Graphene thin films by noncovalent-interaction-driven assembly of graphene monolayers for flexible supercapacitors[J]. Chem,2018,4(4):896-910. doi: 10.1016/j.chempr.2018.01.008
    [69]
    Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano,2010,4(10):5731-5736. doi: 10.1021/nn101390x
    [70]
    Perreault F, De Faria A F, Elimelech M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews,2015,44(16):5861-5896. doi: 10.1039/C5CS00021A
    [71]
    Xiong K R, Liang Y R, Ou-yang Y, et al. Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: Simple synthesis and their enhanced antibacterial activity[J]. New Carbon Materials,2019,34(5):426-433. doi: 10.1016/S1872-5805(19)60024-7
    [72]
    Zou X, Zhang L, Wang Z. Mechanisms of the antimicrobial activities of graphene materials[J]. Journal of the American Chemical Society,2016,138(7):2064-2077. doi: 10.1021/jacs.5b11411
    [73]
    Tu Y S, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology,2013,8(8):594-601. doi: 10.1038/nnano.2013.125
    [74]
    Pham V T H, Truong V K, Quinn M D J, et al. Graphene induces formation of pores that kill spherical and rod-shaped bacteria[J]. ACS Nano,2015,9(8):8458-8467. doi: 10.1021/acsnano.5b03368
    [75]
    Zou F M, Zhou H J, Jeong D Y, et al. Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces,2017,9(2):1343-1351.
    [76]
    Qiu, J J, Geng H, Wang D H, et al. Combination types between graphene oxide and substrate affect the antibacterial activity[J]. Bioactive Materials,2018,3(3):341-346. doi: 10.1016/j.bioactmat.2018.05.001
    [77]
    Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell,2006,126(4):677-689. doi: 10.1016/j.cell.2006.06.044
    [78]
    Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder[J]. Nature Materials,2007,6(12):997-1003. doi: 10.1038/nmat2013
    [79]
    Oh S, Brammer K S, Li Y S J, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proceedings of the National Academy of Sciences,2009,106(7):2130-2135. doi: 10.1073/pnas.0813200106
    [80]
    Tang L A L, Lee W C, Shi H, et al. Highly wrinkled cross‐linked graphene oxide membranes for biological and charge‐storage applications[J]. Small,2012,8(3):423-431. doi: 10.1002/smll.201101690
    [81]
    Liu L F, Zhou Y S, Xue J, et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g‐C3N4 nanosheets for water purification[J]. AIChE Journal,2019,65(10):e16699.
    [82]
    Fu H, Huang J X, Gray K. Crumpled graphene balls adsorb micropollutants from water selectively and rapidly[J]. Carbon,2021,183:958-969. doi: 10.1016/j.carbon.2021.07.081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(1312) PDF Downloads(243) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return