Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
WEI Yu-chen, ZHOU Jian, YANG Lei, GU Jing, CHEN Zhi-peng, HE Xiao-jun. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials. New Carbon Mater., 2022, 37(4): 707-715. doi: 10.1016/S1872-5805(22)60595-X
Citation: WEI Yu-chen, ZHOU Jian, YANG Lei, GU Jing, CHEN Zhi-peng, HE Xiao-jun. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials. New Carbon Mater., 2022, 37(4): 707-715. doi: 10.1016/S1872-5805(22)60595-X

N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials

doi: 10.1016/S1872-5805(22)60595-X
More Information
  • Author Bio:

    魏雨晨,博士研究生. E-mail:wycglut@foxmail.com

  • Corresponding author: HE Xiao-jun, Professor. E-mail: xjhe@ahut.ed u.cn
  • Received Date: 2021-10-06
  • Rev Recd Date: 2021-12-09
  • Available Online: 2022-01-05
  • Publish Date: 2022-07-20
  • The synthesis of porous carbon nanosheets without acid treatment for high-performance supercapacitors (SCs) is difficult. We report the construction of N/S co-doped porous carbon nanosheets (NS-PCNs) from coal tar pitch (CTP), using Na2S2O3·5H2O as the sulfur source and K2CO3 as an activator, under flowing ammonia at high temperature. NS-IPCN800 prepared at 800 °C is composed of two-dimensional (2D) nanosheets with abundant pores and an interconnected 3D carbon skeleton. The abundant microspores increase the number of active sites for electrolyte ion adsorption and small mesopores act as channels for fast ion transmission. The 3D carbon skeleton provides paths for electron conduction. Heteroatom doping provides an additional pseudocapacitance for the NS-IPCN electrodes. As a result the NS-IPCN800 electrode has a high capacitance of 302 F g−1 at 0.05 A g−1 in a 6 mol L−1 of KOH electrolyte, and has a high energy density of 9.71 Wh kg−1 at a power density of 25.98 W kg−1. It also has excellent cycling stability with a capacitance retention of over 94.2% after 10 000 charge-discharge cycles. This work suggests an environmentally friendly way to produce NS-IPCNs from CTP for use as high-performance SC electrode materials.
  • loading
  • [1]
    Deng W W, Qian J F, Cao Y L, et al. Graphene-wrapped Na2C12H6O4 nanoflowers as high-performance anodes for sodium-ion batteries[J]. Small,2016,12:583-587. doi: 10.1002/smll.201502278
    [2]
    Kajiyama S, Szabova L, Sodeyama K, et al. Sodium-ion intercalation mechanism in MXene nanosheets[J]. ACS Nano,2016,10:3334-3341. doi: 10.1021/acsnano.5b06958
    [3]
    Qiu X, Wang N, Wang Z, et al. Towards high-performance zinc-based hybrid supercapacitors via macropores-based charge storage in organic electrolytes[J]. Angewandte Chemie International Edition,2021,60:9610-9617. doi: 10.1002/anie.202014766
    [4]
    Feng J Z, Wang Y, Xu Y T, et al. Construction of supercapacitor-based ionic diodes with adjustable bias directions by using poly (ionic liquid) electrolytes[J]. Advanced Materials,2021,24:2100887.
    [5]
    Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials,2018,30:1705789. doi: 10.1002/adma.201705789
    [6]
    Lee J H, Chae J S, Jeong J H, et al. An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications[J]. Chemical Communications,2019,55:15081-15084. doi: 10.1039/C9CC07784G
    [7]
    He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2:19633-19640. doi: 10.1039/C4TA03323J
    [8]
    Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science,2014,343:1210-1211. doi: 10.1126/science.1249625
    [9]
    Rafieerad A, Amiri A, Sequiera L G, et al. Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for supercapacitor electrodes[J]. Advanced Functional Materials,2021,31:2100015. doi: 10.1002/adfm.202100015
    [10]
    Liu Y C, Hung Y H, Sutarsis, et al. Effects of surface functional groups of coal-tar-pitch-derived nanoporous carbon anodes on microbial fuel cell performance[J]. Renewable Energy,2021,171:87-94. doi: 10.1016/j.renene.2021.01.149
    [11]
    Zang L M, Liu Q F, Qiu J H, et al. Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel[J]. ACS Applied Materials Interfaces,2017,9:33941-33947. doi: 10.1021/acsami.7b10321
    [12]
    Liang X, Nie K W, Ding X, et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel-cobalt sulfide nanosheets[J]. ACS Applied Materials Interfaces,2018,10:10087-10095. doi: 10.1021/acsami.7b19043
    [13]
    Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34:132-139. doi: 10.1016/S1872-5805(19)60006-5
    [14]
    He X J, Zhang N, Shao X L, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineer Journal,2016,297:121-127. doi: 10.1016/j.cej.2016.03.153
    [15]
    Ma T, Liao L X, Zhang X, et al. Hierarchical pores from microscale to macroscale boost ultrahigh lithium intercalation pseudocapacitance of biomass carbon[J]. Journal of Energy Storage,2021,33:102068. doi: 10.1016/j.est.2020.102068
    [16]
    Deshagani S, Maity D, Das A, et al. NiMoO4@NiMnCo2O4 heterostructure: A poly (3, 4-propylenedioxythiophene) composite-based supercapacitor powers an electrochromic device[J]. ACS Applied Materials Interfaces,2021,13:34518-34532. doi: 10.1021/acsami.1c07064
    [17]
    Sun L, Zhou H, Li L, et al. Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor[J]. ACS Applied Materials Interfaces,2017,9:26088-26095. doi: 10.1021/acsami.7b07877
    [18]
    Chen M H, Fan H, Zhang Y, et al. Coupling PEDOT on mesoporous vanadium nitride arrays for advanced flexible all-solid-state supercapacitors[J]. Small,2020,16:2003434. doi: 10.1002/smll.202003434
    [19]
    Zhang P P, Wang M C, Liu Y N, et al. Dual-redox-sites enable two-dimensional conjugated metal-organic frameworks with large pseudocapacitance and wide potential window[J]. Journal of the American Chemical Society,2021,143:10168-10176. doi: 10.1021/jacs.1c03039
    [20]
    Fu W W, Zou T, Liang X H, et al. Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage[J]. Solar Energy Materials Solar Cells,2019,193:149-156. doi: 10.1016/j.solmat.2019.01.007
    [21]
    Pang J, Zhang W F, Zhang J L, et al. Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities[J]. Green Chemistry,2017,19:3916-3926. doi: 10.1039/C7GC01434A
    [22]
    He T, Huang Z H, Yuan S, et al. Kinetically controlled reticular assembly of a chemically stable mesoporous Ni(II)-pyrazolate metal-organic framework[J]. Journal of the American Chemical Society,2021,142:13491-13499.
    [23]
    Sun H H, Liu H Y, Hou Z D, et al. Edge-terminated MoS2 nanosheets with an expanded interlayer spacing on graphene to boost supercapacitive performance[J]. Chemical Engineering Journal,2020,387:124204. doi: 10.1016/j.cej.2020.124204
    [24]
    Lv T, Liu M X, Zhu D Z, et al. Nanocarbon-based materials for flexible all-solid-state supercapacitors[J]. Advanced Materials,2018,30:1705489. doi: 10.1002/adma.201705489
    [25]
    Zhao X, Wang S J, Wu Q. Nitrogen and phosphorus dual-doped hierarchical porous carbon with excellent supercapacitance performance[J]. Electrochimica Acta,2017,247:1140-1146. doi: 10.1016/j.electacta.2017.07.077
    [26]
    Qi F L, Xia Z X, Wei W, et al. Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors[J]. Electrochimica Acta,2017,246:59-67. doi: 10.1016/j.electacta.2017.05.192
    [27]
    Wan L, Wang J L, Xie L J, et al. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors[J]. ACS Applied Materials Interfaces,2014,6:15583-15596. doi: 10.1021/am504564q
    [28]
    Ran F T, Yang X B, Xu X Q, et al. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor[J]. Chemical Engineering Journal,2021,412:128673. doi: 10.1016/j.cej.2021.128673
    [29]
    Lo C T, Lin K W, Wang T P, et al. Differentiating between the effects of nitrogen plasma and hydrothermal treatment on electrospun carbon fibers used as supercapacitor electrodes[J]. Electrochimica Acta,2021,381:138255. doi: 10.1016/j.electacta.2021.138255
    [30]
    Yang P H, Mai W J. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy,2014,8:274-290. doi: 10.1016/j.nanoen.2014.05.022
    [31]
    Xu K L, Liu J, Yan Z X, et al. Synthesis and use of hollow carbon spheres for electric double-layer capacitors[J]. New Carbon Materials,2021,36:794-809. doi: 10.1016/S1872-5805(20)60517-0
    [32]
    Benzigar R M, Talapaneni N S, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews,2018,47:2680-2721. doi: 10.1039/C7CS00787F
    [33]
    He X J, Xie X Y, Wang J X, et al. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors[J]. Nanoscale,2019,11:6610-6619. doi: 10.1039/C9NR00068B
    [34]
    Wang J G, Ren L B, Hou Z D, et al. Flexible reduced graphene oxide/prussian blue films for hybrid supercapacitors[J]. Chemical Engineering Journal,2020,397:125521. doi: 10.1016/j.cej.2020.125521
    [35]
    Yan Y, Hao X F, Gao L G, et al. Highly accessible hierarchical porous carbon from a bi-functional ionic liquid bulky gel: High-performance electrochemical double layer capacitors[J]. Journal of Materials Chemistry A,2019,7:25297. doi: 10.1039/C9TA07820G
    [36]
    Wang J G, Liu H Z, Zhang X Y, et al. Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors[J]. Journal of Materials Chemistry A,2018,6:17653. doi: 10.1039/C8TA07573E
    [37]
    Zhang X, Wang Y Z, Yu X W, et al. High-performance discarded separator-based activated carbon for the application of supercapacitors[J]. Journal of Energy Storage,2021,44:103378. doi: 10.1016/j.est.2021.103378
    [38]
    Wang J G, Liu H Z, Zhang X Y, et al. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage[J]. Small,2018,4:1703950.
    [39]
    Chen C, Zhao M K, Cai Y Y, et al. Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances[J]. Carbon,2021,179:458-468. doi: 10.1016/j.carbon.2021.04.062
    [40]
    Oyedotun K O, Masikhwa T M, Lindberg S, et al. Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene[J]. Chemical Engineering Journal,2019,375:121906. doi: 10.1016/j.cej.2019.121906
    [41]
    Wang J, Park T, Yi J W, et al. Scalable synthesis of holey graphite nanosheets for supercapacitors with high volumetric capacitance[J]. Nanoscale Horizons,2019,4:526-530. doi: 10.1039/C8NH00375K
    [42]
    Yan L J, Li D, Yan T T, et al. N, P, S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors[J]. ACS Sustainable Chemistry Engineering,2018,6:5265-5272. doi: 10.1021/acssuschemeng.7b04922
    [43]
    Wei F, He X J, Ma L B, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters,2020,12:82. doi: 10.1007/s40820-020-00416-2
    [44]
    Choi J, Nam D, Shin D, et al. Charge-transfer-modulated transparent supercapacitor using multidentate molecular linker and conductive transparent nanoparticle assembly[J]. ACS Nano,2019,13:12719-12731. doi: 10.1021/acsnano.9b04594
    [45]
    Cai D, Lu M J, Li L, et al. A highly conductive MOF of graphene analogue Ni3(HITP)2 as a sulfur host for high-performance lithium-sulfur batteries[J]. Small,2019,15:1902605. doi: 10.1002/smll.201902605
    [46]
    Yang F, Zhang S K, Yang Y, et al. Heteroatoms doped carbons derived from crosslinked polyphosphazenes for supercapacitor electrodes[J]. Electrochimica Acta,2019,328:135064. doi: 10.1016/j.electacta.2019.135064
  • 20210234-Supporting Information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article Views(801) PDF Downloads(149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return