Volume 37 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
ZHANG Xin-ren, YANG Jia-ying, REN Zeng-ying, XIE Ke-yu, YE Qian, XU Fei, LIU Xing-rui. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy. New Carbon Mater., 2022, 37(2): 371-380. doi: 10.1016/S1872-5805(22)60601-2
Citation: ZHANG Xin-ren, YANG Jia-ying, REN Zeng-ying, XIE Ke-yu, YE Qian, XU Fei, LIU Xing-rui. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy. New Carbon Mater., 2022, 37(2): 371-380. doi: 10.1016/S1872-5805(22)60601-2

In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy

doi: 10.1016/S1872-5805(22)60601-2
Funds:  This work was supported by the National Natural Science Foundation of China (51972270, 21603175), Natural Science Foundation of Shaanxi Province (2020JZ-07), the Key Research and Development Program of Shaanxi Province (2019TSLGY07-03), the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (2021-TS-03), and the Research Fund of the State Key Laboratory of Solid Lubrication (CAS), China (LSL-2007)
More Information
  • Graphite has proved to be inactive for Na+ storage in ester-based electrolytes when used as the anode material. Recent studies have shown the feasibility of a graphite anode for Na+ storage with a large capacity and a high initial Coulombic efficiency (ICE) in linear ether-based electrolytes. Understanding such solvent-dependent electrochemical behavior at the nanometer scale is essential but has remained elusive, especially the direct visualization of the graphite/electrolyte interface. We report the in-situ observation by atomic force microscopy of a working battery that allowed us to monitor and visualize the changes of the graphite/electrolyte interface in both linear ether and ester-based electrolytes. Results indicate that there is no solid electrolyte interphase (SEI) formation in the linear ether-based electrolytes and the co-intercalation is reversible and stable in the following cycles, which are responsible for the relatively high ICE, large capacity and excellent stability. In the ester-based electrolytes, SEI deposition is obvious during the sodiation process, but not in the desodiation process, leading to a serious consumption of the electrolyte, and thus a low ICE and irreversible Na+ storage. Our findings provide insights into the dynamics of changes in the graphite/electrolyte interface and reveal the solvent-dependent Na+ storage at the nanometer scale, paving the way to develop high-performance Na+ batteries.
  • loading
  • [1]
    Xu Z L, Yoon G, Park K Y, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications,2019,10(1):2598. doi: 10.1038/s41467-019-10551-z
    [2]
    Xu X, Xu Y, Xu F, et al. Black BiVO4: size tailored synthesis, rich oxygen vacancies, and sodium storage performance[J]. Journal of Materials Chemistry A,2020,8(4):1636-1645. doi: 10.1039/C9TA13021G
    [3]
    Xu F, Qiu Y, Han H, et al. Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage[J]. Carbon,2020,159:140-148. doi: 10.1016/j.carbon.2019.12.005
    [4]
    Yang J Y, Han H J, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries[J]. New Carbon Materials,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4
    [5]
    Xu F, Han H, Qiu Y, et al. Facile regulation of carbon framework from the microporous to low-porous via molecular crosslinker design and enhanced Na storage[J]. Carbon,2020,167:896-905. doi: 10.1016/j.carbon.2020.05.081
    [6]
    Yoshio M, Wang H, Fukuda K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material[J]. Angewandte Chemie International Edition,2003,42(35):4203-4206. doi: 10.1002/anie.200351203
    [7]
    Nishi Y. Lithium ion secondary batteries; past 10 years and the future[J]. Journal of Power Sources,2001,100(1):101-106.
    [8]
    Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28-30:1172-1175. doi: 10.1016/0167-2738(88)90351-7
    [9]
    Nobuhara K, Nakayama H, Nose M, et al. First-principles study of alkali metal-graphite intercalation compounds[J]. Journal of Power Sources,2013,243:585-587. doi: 10.1016/j.jpowsour.2013.06.057
    [10]
    Yoon G, Kim H, Park I, et al. Conditions for reversible Na intercalation in graphite: Theoretical studies on the interplay among guest ions, solvent, and graphite host[J]. Advanced Energy Materials,2017,7(2):1601519. doi: 10.1002/aenm.201601519
    [11]
    Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-10173. doi: 10.1002/anie.201403734
    [12]
    Goktas M, Bolli C, Berg E J, et al. Graphite as cointercalation electrode for sodium-ion batteries: Electrode dynamics and the missing solid electrolyte interphase (SEI)[J]. Advanced Energy Materials,2018,8(16):1702724. doi: 10.1002/aenm.201702724
    [13]
    Kim H, Hong J, Yoon G, et al. Sodium intercalation chemistry in graphite[J]. Energy & Environmental Science,2015,8(10):2963-2969.
    [14]
    Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources,2015,293:626-634. doi: 10.1016/j.jpowsour.2015.05.116
    [15]
    Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews,2014,114(23):11503-11618. doi: 10.1021/cr500003w
    [16]
    Zhang J, Wang D W, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase[J]. Energy & Environmental Science,2017,10(1):370-376.
    [17]
    Liu M, Xing L, Xu K, et al. Deciphering the paradox between the co-intercalation of sodium-solvent into graphite and its irreversible capacity[J]. Energy Storage Materials,2020,26:32-39. doi: 10.1016/j.ensm.2019.12.026
    [18]
    Stevens D A, Dahn J. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of The Electrochemical Society,2001,148(8):A803. doi: 10.1149/1.1379565
    [19]
    Kim H, Hong J, Park Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials,2015,25(4):534-541. doi: 10.1002/adfm.201402984
    [20]
    Liang H J, Hou B H, Li W H, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science,2019,12(12):3575-3584.
    [21]
    Seidl L, Bucher N, Chu E, et al. Intercalation of solvated Na-ions into graphite[J]. Energy & Environmental Science,2017,10(7):1631-1642.
    [22]
    Cohn A P, Share K, Carter R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano Letters,2016,16(1):543-548. doi: 10.1021/acs.nanolett.5b04187
    [23]
    Kajita T, Itoh T. Mixed ether-based solvents provide a long cycle life with high rate capability to graphite anodes for Na-ion batteries[J]. Physical Chemistry Chemical Physics,2018,20(4):2188-2195. doi: 10.1039/C7CP06998G
    [24]
    Leifer N, Greenstein M F, Mor A, et al. NMR-detected dynamics of sodium co-intercalation with diglyme solvent molecules in graphite anodes linked to prolonged cycling[J]. The Journal of Physical Chemistry C,2018,122(37):21172-21184. doi: 10.1021/acs.jpcc.8b06089
    [25]
    Liu S, Peng J, Chen L, et al. In-situ STM and AFM studies on electrochemical interfaces in imidazolium-based ionic liquids[J]. Electrochimica Acta,2019,309:11-17. doi: 10.1016/j.electacta.2019.04.066
    [26]
    Esat T, Friedrich N, Tautz F S, et al. A standing molecule as a single-electron field emitter[J]. Nature,2018,558(7711):573-576. doi: 10.1038/s41586-018-0223-y
    [27]
    Larson A M, van Baren J, Kintigh J, et al. Lateral standing of the pentacene derivative 5, 6, 7-trithiapentacene-13-one on gold: a combined STM, DFT, and NC-AFM study[J]. The Journal of Physical Chemistry C,2018,122(22):11938-11944. doi: 10.1021/acs.jpcc.8b03633
    [28]
    Vernisse L, Guillermet O, Gourdon A, et al. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy[J]. Surface Science,2018,669:87-94. doi: 10.1016/j.susc.2017.11.008
    [29]
    Liu X R, Wang L, Wan L J, et al. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide[J]. ACS Applied Materials & Interfaces,2015,7(18):9573-9580.
    [30]
    Wan J, Hao Y, Shi Y, et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries[J]. Nature Communications,2019,10(1):3265. doi: 10.1038/s41467-019-11197-7
    [31]
    Gross L, Mohn F, Moll N, et al. Bond-order discrimination by atomic force microscopy[J]. Science,2012,337(6100):1326. doi: 10.1126/science.1225621
    [32]
    Liu X, Wang D, Wan L. Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy[J]. Science Bulletin,2015,60(9):839-849. doi: 10.1007/s11434-015-0763-6
    [33]
    Jandt K D. Atomic force microscopy of biomaterials surfaces and interfaces[J]. Surface Science,2001,491(3):303-332. doi: 10.1016/S0039-6028(01)01296-1
    [34]
    Wang Z, Yang H, Liu Y, et al. Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries[J]. Small,2020,16(51):2003268. doi: 10.1002/smll.202003268
    [35]
    Zhou M, Gan H, Yang X, et al. Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte[J]. Journal of Materials Chemistry A,2018,6:1582-1589. doi: 10.1039/C7TA09631C
    [36]
    Shakourian-Fard M, Kamath G, Smith K, et al. Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: insights from first-principles calculations[J]. The Journal of Physical Chemistry C,2015,119:22747-22759. doi: 10.1021/acs.jpcc.5b04706
    [37]
    Xing L, Zheng X, Schroeder M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Accounts of Chemical Research,2018,51(2):282-289. doi: 10.1021/acs.accounts.7b00474
    [38]
    Xu K. Electrolytes and interphasial chemistry in Li ion devices[J]. Energies,2010,3(1):135-154. doi: 10.3390/en3010135
    [39]
    An S J, Li J, Daniel C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon,2016,105:52-76. doi: 10.1016/j.carbon.2016.04.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(1070) PDF Downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return