Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
LI Hong-sheng, WU Ai-min, CAO Tun, HUANG Hao. The absorption mechanism for magnetic waves and research progress on carbon-coated magnetic nanoparticles. New Carbon Mater., 2022, 37(4): 695-706. doi: 10.1016/S1872-5805(22)60624-3
Citation: LI Hong-sheng, WU Ai-min, CAO Tun, HUANG Hao. The absorption mechanism for magnetic waves and research progress on carbon-coated magnetic nanoparticles. New Carbon Mater., 2022, 37(4): 695-706. doi: 10.1016/S1872-5805(22)60624-3

The absorption mechanism for magnetic waves and research progress on carbon-coated magnetic nanoparticles

doi: 10.1016/S1872-5805(22)60624-3
Funds:  Fundamental Research Funds for the Central Universities (DUT20LAB123 and DUT20-LAB307) Natural Science Foundation of Jiangsu Province (BK20191167)
More Information
  • Corresponding author: WU Ai-min, Ph. D. Associate Professor. E-mail: aimin@dlut.edu.cn
  • Received Date: 2022-04-28
  • Rev Recd Date: 2022-06-16
  • Available Online: 2022-06-20
  • Publish Date: 2022-07-20
  • The rapid development of electromagnetic wave (EMW) communication technology has greatly aided the transmission of information and, as a result, the problem of high frequency electronic radiation has become increasingly serious. EMW absorbing materials have become important for solving this problem. The development of high-performance EMW absorption materials with "thin, light, wide, strong" characteristics is the focus and of EMW absorption. According to transmission line theory, we introduce the stealth mechanism of microwave-absorbing materials and summarize their preparation methods. Research progress on carbon-coated magnetic nanoparticle microwave absorbing materials is highlighted and their future prospects and development trends are then discussed. Finally, several suggestions are made for the applications and development of carbon-coated magnetic materials.
  • loading
  • [1]
    Wei S, Wang X, Zhang B, et al. Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance[J]. Chemical Engineering Journal,2017,314:477-487. doi: 10.1016/j.cej.2016.12.005
    [2]
    Wang Y, Bo J, Sai C, et al. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms[J]. New Carbon Materials,2021,36:1016-1033. doi: 10.1016/S1872-5805(21)60095-1
    [3]
    Yang X, Duan Y, Li S, et al. Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance[J]. Carbon,2022,188:376-384. doi: 10.1016/j.carbon.2021.12.044
    [4]
    Guo R, Su D, Chen F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption[J]. ACS Applied Materials & Interfaces,2022,14(2):3084-3094.
    [5]
    Yang Y, Xia L, Zhang T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chemical Engineering Journal,2018,352:510-518. doi: 10.1016/j.cej.2018.07.064
    [6]
    Wang J, Jia Z, Liu X, et al. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption[J]. Nano-Micro Letters,2021,13(1):175. doi: 10.1007/s40820-021-00704-5
    [7]
    Wang C, Chen P, Li X, et al. Enhanced electromagnetic wave absorption for Y2O3-doped SiBCN ceramics[J]. ACS Applied Materials & Interfaces,2021,13(46):55440-55453.
    [8]
    Tian W, Li J, Liu Y, et al. Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands[J]. Nano-Micro Letters,2021,13(1):161. doi: 10.1007/s40820-021-00678-4
    [9]
    Wang L, Yu X, Huang M, et al. Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption[J]. Carbon,2021,172:516-28. doi: 10.1016/j.carbon.2020.09.050
    [10]
    邓钏, 张卫珂, 杨艳青等. 磁性纳米洋葱碳基复合材料的制备及其吸波性能[J]. 新型炭材料, 2019, 34: 170-180. doi: 10.1016/S1872-5805(21)60023-15

    JIN H, SUN Q, WANG J, et al. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure[J]. New Carbon Materials,2021,36:390-400. doi: 10.1016/S1872-5805(21)60023-15
    [11]
    LIU S, LIU J, DONG X. Electromagnetic wave shielding and absorption materials. Chemical Industry Press , 2003.
    [12]
    Zhu H, Liang J, Chen J, et al. Rational construction of yolk-shell structured Co3Fe7/FeO@carbon composite and optimization of its microwave absorption. Journal of Colloid and Interface Science[J]. Journal of Colloid and Interface Science,2022,626:775-786.
    [13]
    Huang H, Zhang XF, Lv B, et al. Characterization and microwave absorption of “core/shell” type nanoparticles[J]. Materials Science Forum,2007,561:1097-100.
    [14]
    Li H, Gao S, Tong H, et al. The capacitive loss of microwave energy in Ni@SiC@C core/bi-shell nanoparticles[J]. Chemical Engineering Journal,2022:434.
    [15]
    Wu N, Liu X, Zhao C, et al. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules[J]. Journal of Alloys and Compounds,2016,656:628-634. doi: 10.1016/j.jallcom.2015.10.027
    [16]
    Han B, Chu W, Han X, et al. Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials[J]. Carbon,2020,168:404-414. doi: 10.1016/j.carbon.2020.07.005
    [17]
    Li G, Wang L, Li W, et al. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous and Mesoporous Materials 2015, 211: 97-104.
    [18]
    Lv H, Ji G, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features[J]. Journal of Materials Chemistry C,2015,3(39):10232-10241. doi: 10.1039/C5TC02512E
    [19]
    Zhou X, Wang B, Jia Z, et al. Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance[J]. Journal of Colloid and Interface Science,2021,582:515-525. doi: 10.1016/j.jcis.2020.08.087
    [20]
    Zhang J, Sun J, Hu Y, et al. Electrochemical capacitive properties of all-solid-state supercapacitors based on ternary MoS2/CNTs-MnO2 hybrids and ionic mixture electrolyte[J]. Journal of Alloys and Compounds,2019,780:276-283. doi: 10.1016/j.jallcom.2018.11.332
    [21]
    Zhou C, Wu C, Liu D, et al. Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber[J]. Chemistry,2019,25(9):2234-2241. doi: 10.1002/chem.201805565
    [22]
    Liao Z, Ma M, Tong Z, et al. Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber[J]. Journal of Colloid and Interface Science,2021,600:90-98. doi: 10.1016/j.jcis.2021.04.142
    [23]
    Xu J, Liu Z, Li Q, et al. Wrinkled Fe3O4@C magnetic composite microspheres: regulation of magnetic content and their microwave absorbing performance[J]. Journal of Colloid and Interface Science,2021,601:397-410. doi: 10.1016/j.jcis.2021.05.153
    [24]
    Zhang J, Hector AL, Soulé S, et al. Effects of ammonolysis and of sol-gel titanium oxide nitride coating on carbon fibres for use in flexible supercapacitors[J]. Journal of Materials Chemistry A,2018,6(12):5208-5216. doi: 10.1039/C7TA11142H
    [25]
    Zhao H, Wang F, Cui L, et al. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers [J]: A Review. Nano-Micro Letters, 2021, 13(1): 208.
    [26]
    Pan F, Liu Z, Deng B, et al. Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance[J]. Nano-Micro Letters,2021,13(1):43. doi: 10.1007/s40820-020-00568-1
    [27]
    Xu C, Wang L, Li X, et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within "tubes on rods" matrix toward enhanced microwave absorption[J]. Nano-Micro Letters,2021,13(1):47. doi: 10.1007/s40820-020-00572-5
    [28]
    Quan B, Liang X, Ji G, et al. Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces[J]. ACS Applied Materials & Interfaces,2017,9(11):9964-9974.
    [29]
    Liu D, Du Y, Xu P, et al. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption[J]. Journal of Materials Chemistry A,2021,9(8):5086-5096. doi: 10.1039/D0TA10942H
    [30]
    Liu P, Gao S, Zhang G, et al. Hollow engineering to Co@N‐doped carbon nanocages via synergistic protecting‐etching strategy for ultrahigh microwave absorption [J]. Advanced Functional Materials, 2021, 31(27).
    [31]
    Miao P, Cao J, Kong J, et al. Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption[J]. Nanoscale,2020,12(25):13311-13315. doi: 10.1039/D0NR03104F
    [32]
    Liu X, Hao C, He L, et al. Yolk-shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption[J]. Nano Research,2018,11(8):4169-4182. doi: 10.1007/s12274-018-2006-z
    [33]
    Xiong J, Xiang Z, Deng B, et al. Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties[J]. Applied Surface Science,2020:513.
    [34]
    Wang Y, Du Y, Qiang R, et al. Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber [J]. Advanced Materials Interfaces , 2016, 3(7).
    [35]
    Wang L, Li X, Li Q, et al. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: as a lightweight and high-performance microwave absorber[J]. ACS Applied Materials & Interfaces,2018,10(26):22602-22610.
    [36]
    Xu H, Yin X, Li M, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature[J]. Carbon,2018,132:343-351. doi: 10.1016/j.carbon.2018.02.040
    [37]
    Zhang XF, Dong XL, Huang H, et al. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J]. Journal of Physics D:Applied Physics,2007,40(17):5383-5387. doi: 10.1088/0022-3727/40/17/056
    [38]
    Liu X, Or SW, Sun Y, et al. Influence of a graphite shell on the thermal, magnetic and electromagnetic characteristics of Fe nanoparticles[J]. Journal of Alloys and Compounds,2013,548:239-244. doi: 10.1016/j.jallcom.2012.09.006
    [39]
    Qiang R, Du Y, Zhao H, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A,2015,3(25):13426-13434. doi: 10.1039/C5TA01457C
    [40]
    Wang T, Wang H, Chi X, et al. Synthesis and microwave absorption properties of Fe-C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon[J]. Carbon,2014,74:312-318. doi: 10.1016/j.carbon.2014.03.037
    [41]
    Luo W, Wang M, Wang K, et al. A robust hierarchical MXene/Ni/Aluminosilicate glass composite for high-performance microwave absorption[J]. Advance Science,2021:2104163.
    [42]
    Wang L, Huang M, Yu X, et al. MOF-derived Ni1-xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber[J]. Nano-Micro Letters,2020,12(1):150. doi: 10.1007/s40820-020-00488-0
    [43]
    Zhang XF, Dong XL, Huang H, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules[J]. Applied Physics Letters, 2006, 89(5).
    [44]
    Li N, Cao M, Hu C. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers[J]. Journal of Materials Chemistry, 2012, 22(35).
    [45]
    Tong G, Liu F, Wu W, et al. Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics[J]. Journal of Materials Chemistry A, 2014, 2(20).
    [46]
    Meng H, Zhao X, Yu L, et al. Island-like nickel/carbon nanocomposites as potential microwave absorbers-synthesis via in situ solid phase route and investigation of electromagnetic properties[J]. Journal of Alloys and Compounds,2015,644:236-241. doi: 10.1016/j.jallcom.2015.04.198
    [47]
    Chen T, Deng F, Zhu J, et al. Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties [J]. Journal of Materials Chemistry, 2012, 22(30).
    [48]
    Liu D, Du Y, Xu P, et al. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption[J]. Journal of Materials Chemistry C,2019,7(17):5037-5046. doi: 10.1039/C9TC00771G
    [49]
    Gu J, Li Q, Zeng P, et al. Facile solid-state synthesis of Ni@C nanosheet-assembled hierarchical network for high-performance lithium storage[J]. Journal of Power Sources,2017,358:69-75. doi: 10.1016/j.jpowsour.2017.05.029
    [50]
    Wang B, Wu Q, Fu Y, et al. Yolk-shell structured Co@SiO2@Void@C nanocomposite with tunable cavity prepared by etching of SiO2 as high-efficiency microwave absorber[J]. Journal of Colloid and Interface Science,2021,594:342-351. doi: 10.1016/j.jcis.2021.03.011
    [51]
    Liu L, He N, Wu T, et al. Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties[J]. Chemical Engineering Journal,2019,355:103-108. doi: 10.1016/j.cej.2018.08.131
    [52]
    Zheng Z, Xu B, Huang L, et al. Novel composite of Co/carbon nanotubes: synthesis, magnetism and microwave absorption properties[J]. Solid State Sciences,2008,10(3):316-320. doi: 10.1016/j.solidstatesciences.2007.09.016
    [53]
    Yin Y, Liu X, Wei X, et al. Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber[J]. ACS Applied Materials & Interfaces,2017,9(36):30850-30861.
    [54]
    Miao P, Yu Z, Chen W, et al. Synergetic dielectric and magnetic losses of a core-shell Co/MnO/C nanocomplex toward highly efficient microwave absorption[J]. Inorganic Chemistry,2022,61(3):1787-1796. doi: 10.1021/acs.inorgchem.1c03749
    [55]
    Ma Z, Liu Q, Yuan J, et al. Analyses on multiple resonance behaviors and microwave reflection loss in magnetic Co microflowers[J]. Physica Status Solidi,2012,249(3):575-580. doi: 10.1002/pssb.201147382
    [56]
    Kong J, Wang F, Wan X, et al. Template-free synthesis of Co nanoporous structures and their electromagnetic wave absorption properties[J]. Materials Letters,2012,78:69-71. doi: 10.1016/j.matlet.2012.03.026
    [57]
    Wang C, Han X, Zhang X, et al. Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies[J]. Journal of Physical Chemistry C,2010,114:14826-14830. doi: 10.1021/jp1050386
    [58]
    Li J, Huang J, Qin Y, et al. Magnetic and microwave properties of cobalt nanoplatelets[J]. Materials Science and Engineering:B,2007,138(3):199-204. doi: 10.1016/j.mseb.2006.12.001
    [59]
    Lv H, Liang X, Ji G, et al. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties[J]. ACS Applied Materials & Interfaces,2015,7(18):9776-9783.
    [60]
    He C, Qiu S, Wang X, et al. Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties[J]. Journal of Materials Chemistry, 2012, 22(41).
    [61]
    Wen B, Yang H, Lin Y, et al. Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science,2022,605:657-666. doi: 10.1016/j.jcis.2021.07.118
    [62]
    Qiang R, Du Y, Wang Y, et al. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon,2016,98:599-606. doi: 10.1016/j.carbon.2015.11.054
    [63]
    Liu T, Xie X, Pang Y, et al. Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material[J]. Journal of Materials Chemistry C,2016,4(8):1727-1735. doi: 10.1039/C5TC03874J
    [64]
    Wei S, Chen T, Wang Q, et al. Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption[J]. Journal of Colloid and Interface Science,2021,593:370-379. doi: 10.1016/j.jcis.2021.02.120
    [65]
    He Z, Liu M, Liu L, et al. Distinct plasmon resonance enhanced microwave absorption of strawberry-like Co/C/Fe/C core-shell hierarchical flowers via engineering the diameter and interparticle spacing of Fe/C nanoparticles[J]. RSC Advances,2019,9(39):22644-22655. doi: 10.1039/C9RA04988F
    [66]
    Zhao X, Yan J, Huang Y, et al. Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,595:78-87. doi: 10.1016/j.jcis.2021.03.109
    [67]
    Wang Y L, Yang S H, Wang H Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber[J]. Carbon,2020,167:485-494. doi: 10.1016/j.carbon.2020.06.014
    [68]
    Liu Y, Chen Z, Xie W, et al. Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology[J]. Journal of Alloys and Compounds,2019:809.
    [69]
    Sun G, Wu H, Liao Q, et al. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene[J]. Nano Research,2018,11(5):2689-2704. doi: 10.1007/s12274-017-1899-2
    [70]
    Guo T, Huang B, Li C, et al. Magnetic sputtering of FeNi/C bilayer film on SiC fibers for effective microwave absorption in the low-frequency region[J]. Ceramics International,2021,47(4):5221-5226. doi: 10.1016/j.ceramint.2020.10.101
    [71]
    Liu X G, Li B, Geng D Y, et al. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band[J]. Carbon,2009,47(2):470-474. doi: 10.1016/j.carbon.2008.10.028
    [72]
    Feng C, Liu X, Sun Y, et al. Enhanced microwave absorption of flower-like FeNi@C nanocomposites by dual dielectric relaxation and multiple magnetic resonance[J]. RSC Advance,2014,4(43):22710-22715. doi: 10.1039/C4RA01437E
    [73]
    Ou Y J, He Z, Zhang Y, et al. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability[J]. ACS Applied Materials & Interfaces,2019,11(42):39304-39314.
    [74]
    Wen F, Zhang F, Liu Z. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. The Journal of Physical Chemistry C,2011,115(29):14025-14030. doi: 10.1021/jp202078p
    [75]
    Liu Q, Xu X, Xia W, et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography[J]. Nanoscale,2015,7(5):1736-1743. doi: 10.1039/C4NR05547K
    [76]
    Yang H, Wen B, Wang L. Carbon nanotubes modified CoZn/C composites with rambutan-like applied to electromagnetic wave absorption[J]. Applied Surface Science,2020:509.
    [77]
    Wan Y, Cui T, Xiao J, et al. Engineering carbon fibers with dual coatings of FeCo and CuO towards enhanced microwave absorption properties[J]. Journal of Alloys and Compounds,2016,687:334-341. doi: 10.1016/j.jallcom.2016.06.147
    [78]
    Wang S, Peng S, Zhong S, et al. Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@Air@C hierarchical heterostructures for efficient electromagnetic wave absorption[J]. Journal of Materials Chemistry C,2018,6(35):9465-9474. doi: 10.1039/C8TC03260B
    [79]
    Han M, Yin X, Hou Z, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces,2017,9(13):11803-11810.
    [80]
    Wang N, Han X, Liu D, et al. Core-shell FeCo@carbon nanoparticles encapsulated in polydopaminederived carbon nanocages for efficient microwave absorption[J]. Carbon,2019,145:701-711. doi: 10.1016/j.carbon.2019.01.082
    [81]
    Liu P, Gao S, Wang Y, et al. Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation[J]. ACS Applied Materials & Interfaces,2019,11(28):25624-25635.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(837) PDF Downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return