Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
ZHOU Yi-jing, LUO Jin-rong, SHAO Yan-yan, XIA Zhou, SHAO Yuan-long. Progress on carbonene-based materials for Zn-ion hybrid supercapacitors. New Carbon Mater., 2022, 37(5): 918-935. doi: 10.1016/S1872-5805(22)60642-5
Citation: ZHOU Yi-jing, LUO Jin-rong, SHAO Yan-yan, XIA Zhou, SHAO Yuan-long. Progress on carbonene-based materials for Zn-ion hybrid supercapacitors. New Carbon Mater., 2022, 37(5): 918-935. doi: 10.1016/S1872-5805(22)60642-5

Progress on carbonene-based materials for Zn-ion hybrid supercapacitors

doi: 10.1016/S1872-5805(22)60642-5
Funds:  This project was financially supported by National Natural Science Foundation of China (52003188 (Y.S.)), Natural Science Foundation of Jiangsu Province (BK20200871 (Y.S.)), Jiangsu innovation and entrepreneurship talent program (JSSCRC2021529), Gusu's young leading talent (ZXL2021449), Key industry technology innovation project of Suzhou (SYG202108)
More Information
  • Author Bio:

    周伊静、罗金荣为共同第一作者

  • Corresponding author: SHAO Yuan-long,Professor. E-mail: shaoyuanlong@pku.edu.cn
  • Received Date: 2022-06-27
  • Rev Recd Date: 2022-08-29
  • Available Online: 2022-08-23
  • Publish Date: 2022-10-01
  • Along with the emergence of wearable electronic devices, green energy devices like Zn-ion hybrid supercapacitors (ZHSCs), which are extremely safe and cheap, and have excellent stability and high power energy densities, have received great attention. Carbonenes, mainly including graphene and carbon nanotubes (CNTs), are promising materials for ZHSCs because of their exceptional electrical conductivity and excellent mechanical stability. A comprehensive overview of strategies for the modification of carbonene-based materials for ZHSCs, and a brief summary of their energy storage mechanisms is given and topics for potential research are suggested.
  • loading
  • [1]
    Gao J, Shang K, Ding Y, et al. Material and configuration design strategies towards flexible and wearable power supply devices: a review[J]. Journal of Materials Chemistry A,2021,9(14):8950-8965. doi: 10.1039/D0TA11260G
    [2]
    Huang Q, Wang D, Zheng Z. Textile-based electrochemical energy etorage devices[J]. Advanced Energy Materials,2016,6(22):1600783. doi: 10.1002/aenm.201600783
    [3]
    Jayathilaka W, Qi K, Qin Y, et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors[J]. Advanced Materials,2019,31(7):e1805921. doi: 10.1002/adma.201805921
    [4]
    Sumboja A, Liu J, Zheng W G, et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design[J]. Chemical Society Reviews,2018,47(15):5919-5945. doi: 10.1039/C8CS00237A
    [5]
    Shao Y, Shen F, Shao Y. Recent advances in aqueous zinc‐ion hybrid capacitors: a minireview[J]. ChemElectroChem,2020,8(3):484-491.
    [6]
    Gao M, Wang P, Jiang L, et al. Power generation for wearable systems[J]. Energy & Environmental Science,2021,14(4):2114-2157.
    [7]
    Li, Lou Z, Chen D, et al. Recent advances in flexible/stretchable supercapacitors for wearable electronics[J]. Small,2018,14(43):e1702829. doi: 10.1002/smll.201702829
    [8]
    Yi F, Ren H, Shan J, et al. Wearable energy sources based on 2D materials[J]. Chemical Society Reviews,2018,47(9):3152-3188. doi: 10.1039/C7CS00849J
    [9]
    Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule,2020,4(4):771-799. doi: 10.1016/j.joule.2020.03.002
    [10]
    Xu C, Li B, Du H, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition,2012,51(4):933-935. doi: 10.1002/anie.201106307
    [11]
    Dong L, Ma X, Li Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials,2018,13:96-102. doi: 10.1016/j.ensm.2018.01.003
    [12]
    Li J, Zhang J, Yu L, et al. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors[J]. Energy Storage Materials,2021,42:705-714. doi: 10.1016/j.ensm.2021.08.018
    [13]
    Guo Q, Liu J, Bai C, et al. 2D silicene nanosheets for high-performance zinc-ion hybrid capacitor application[J]. ACS Nano,2021,15(10):16533-16541. doi: 10.1021/acsnano.1c06104
    [14]
    Sun G, Yang H, Zhang G, et al. A capacity recoverable zinc-ion micro-supercapacitor[J]. Energy & Environmental Science,2018,11(12):3367-3374.
    [15]
    Wu S, Chen Y, Jiao T, et al. An aqueous Zn‐ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles[J]. Advanced Energy Materials,2019,9(47):1902915. doi: 10.1002/aenm.201902915
    [16]
    Yin J, Zhang W, Wang W, et al. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials,2020,10(37):2001705. doi: 10.1002/aenm.202001705
    [17]
    Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [18]
    Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [19]
    Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541. doi: 10.1126/science.1200770
    [20]
    Ratajczak P, Suss M E, Kaasik F, et al. Carbon electrodes for capacitive technologies[J]. Energy Storage Materials,2019,16:126-145. doi: 10.1016/j.ensm.2018.04.031
    [21]
    Huang L, Xiang Y, Luo M, et al. Hierarchically porous carbon with heteroatom doping for the application of Zn-ion capacitors[J]. Carbon,2021,185:1-8. doi: 10.1016/j.carbon.2021.09.019
    [22]
    Lu Y, Li Z, Bai Z, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy,2019,66:104132. doi: 10.1016/j.nanoen.2019.104132
    [23]
    Zhang H, Liu Q, Fang Y, et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advanced Materials,2019,31(44):e1904948. doi: 10.1002/adma.201904948
    [24]
    Zhang X, Zhang Y, Qian J, et al. Synergistic effects of B/S co-doped spongy-like hierarchically porous carbon for a high performance zinc-ion hybrid capacitor[J]. Nanoscale,2022,14(5):2004-2012. doi: 10.1039/D1NR07818F
    [25]
    Chen S, Ma L, Zhang K, et al. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres[J]. Journal of Materials Chemistry A,2019,7(13):7784-7790. doi: 10.1039/C9TA00733D
    [26]
    Liu P, Liu W, Huang Y, et al. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage[J]. Energy Storage Materials,2020,25:858-865. doi: 10.1016/j.ensm.2019.09.004
    [27]
    Jiang H, Yuan D, Huang D, et al. Towards high rate and high areal capacity Zn ion hybrid supercapacitor: Fluffy graphene architecture anchored with ultrathin redox-active molecule[J]. Applied Surface Science,2022,585:152695. doi: 10.1016/j.apsusc.2022.152695
    [28]
    Zhang X, Pei Z, Wang C, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small,2019,15(47):e1903817. doi: 10.1002/smll.201903817
    [29]
    Pu J, Cao Q, Gao Y, et al. Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility[J]. Journal of Materials Chemistry A,2021,9(32):17292-17299. doi: 10.1039/D1TA05617D
    [30]
    Wang C, Wei S, Chen S, et al. Delaminating vanadium carbides for zinc‐ion storage: hydrate precipitation and H+/Zn2+ co‐action mechanism[J]. Small Methods,2019,3(12):1900495. doi: 10.1002/smtd.201900495
    [31]
    Deng Y, Wang H, Zhang K, et al. Flexible quasi‐solid‐state high‐performance aqueous zinc ion hybrid supercapacitor with water‐in‐salt hydrogel electrolyte and N/P‐dual doped graphene hydrogel electrodes[J]. Advanced Sustainable Systems,2021,6(1):2100191.
    [32]
    Cui R, Zhang Z, Zhang H, et al. Aqueous organic Zinc-ion hybrid supercapacitors prepared by 3D vertically aligned graphene-polydopamine composite electrode [J]. Nanomaterials (Basel), 2022, 12(3):DOI: 10.3390/nano12030386.
    [33]
    Zheng Y, Zhao W, Jia D, et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material[J]. Chemical Engineering Journal,2020,387:124161
    [34]
    Yu P, Zeng Y, Zeng Y, et al. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture[J]. Electrochimica Acta,2019,327:134999. doi: 10.1016/j.electacta.2019.134999
    [35]
    Deng X, Li J, Shan Z, et al. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance[J]. Journal of Materials Chemistry A,2020,8(23):11617-11625. doi: 10.1039/D0TA02770G
    [36]
    Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon[J]. Energy Storage Materials,2020,28:307-314. doi: 10.1016/j.ensm.2020.01.028
    [37]
    He W, Cheng H, Qu L. Progress on carbonene fibers for energy devices[J]. Acta Physico-Chimica Sinica,2022,38:2203004. doi: 10.3866/PKU.WHXB202203004
    [38]
    Chen T, Dai L. Carbon nanomaterials for high-performance supercapacitors[J]. Materials Today,2013,16(7-8):272-280. doi: 10.1016/j.mattod.2013.07.002
    [39]
    Sumio l. Helical microtubules of graphitic carbon[J]. Nature,1991,354(7):56-58.
    [40]
    Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications[J]. Science,2002,297(5582):787-792. doi: 10.1126/science.1060928
    [41]
    Martin C, Jing M, Bin C, et al. Pore structure of raw and purified HiPco single-walled carbon nanotubes[J]. Chemical Physics Letters,2002,365:69-74. doi: 10.1016/S0009-2614(02)01420-3
    [42]
    Niu C, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters,1997,70(11):1480-1482. doi: 10.1063/1.118568
    [43]
    Dai L, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small,2012,8(8):1130-1166. doi: 10.1002/smll.201101594
    [44]
    Tian Y, Amal R, Wang D W. An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes[J]. Frontiers in Energy Research,2016,4:34.
    [45]
    Wang S, Wang Q, Zeng W, et al. A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode[J]. Nano-Micro Letters,2019,11(1):70. doi: 10.1007/s40820-019-0301-1
    [46]
    Mandal M, Subudhi S, Alam I, et al. Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications[J]. Inorganic Chemistry Communications,2021,123:108332. doi: 10.1016/j.inoche.2020.108332
    [47]
    Ni T, Wang S, Shi J, et al. Highly flexible and self‐healable zinc‐ion hybrid supercapacitors based on MWCNTs‐RGO fibers[J]. Advanced Materials Technologies,2020:2000268. doi: 10.1002/admt.202000268
    [48]
    Kang S H, Lee G Y, Lim J, et al. CNT-rGO hydrogel-integrated fabric composite synthesized via an interfacial gelation process for wearable supercapacitor electrodes[J]. ACS Omega,2021,6(30):19578-19585. doi: 10.1021/acsomega.1c02091
    [49]
    Dong L, Yang W, Yang W, et al. Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors[J]. Chemical Engineering Journal,2020,384:123355. doi: 10.1016/j.cej.2019.123355
    [50]
    Fan Z, Jin J, Li C, et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano,2021,15(2):3098-3107. doi: 10.1021/acsnano.0c09646
    [51]
    Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6:183-191. doi: 10.1038/nmat1849
    [52]
    Stoller M D, Sungjin P, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Letters,2008,8(10):3498-3502. doi: 10.1021/nl802558y
    [53]
    Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. doi: 10.1002/adma.201001068
    [54]
    El-Kady M F, Shao Y, Kaner R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials,2016,1(7):16033. doi: 10.1038/natrevmats.2016.33
    [55]
    Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9-10):351-355. doi: 10.1016/j.ssc.2008.02.024
    [56]
    Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett,2008,100(1):016602. doi: 10.1103/PhysRevLett.100.016602
    [57]
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [58]
    Shao Y, El-Kady M F, Wang L J, et al. Graphene-based materials for flexible supercapacitors[J]. Chemical Society Reviews,2015,44(11):3639-3665. doi: 10.1039/C4CS00316K
    [59]
    Li S, Li Y, Shao Y, et al. Emerging two-dimensional materials constructed nanofluidic fiber: properties, preparation and applications[J]. Advanced Fiber Materials,2021,4(2):129-144.
    [60]
    Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials,2012,24(30):4144-4150. doi: 10.1002/adma.201200197
    [61]
    Zhu Y, Ye X, Jiang H, et al. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes[J]. Journal of Power Sources,2020,453:227851. doi: 10.1016/j.jpowsour.2020.227851
    [62]
    Xu Y, Chen X, Huang C, et al. Redox-active p-phenylenediamine functionalized reduced graphene oxide film through covalently grafting for ultrahigh areal capacitance Zn-ion hybrid supercapacitor[J]. Journal of Power Sources,2021,488:229426. doi: 10.1016/j.jpowsour.2020.229426
    [63]
    Pattananuwat P, Pornprasertsuk R, Qin J, et al. Polypyrrole nanoparticles embedded nitrogen-doped graphene composites as novel cathode for long life cycles and high-power zinc-ion hybrid supercapacitors[J]. RSC Advances,2021,11(56):35205-35214. doi: 10.1039/D1RA05503H
    [64]
    Luo J, Xu L, Liu H, et al. Harmonizing graphene laminate spacing and zinc‐ion solvated structure toward efficient compact capacitive charge storage[J]. Advanced Functional Materials,2022:2112151.
    [65]
    Shao Y, El-Kady M F, Lin C W, et al. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors[J]. Advanced Materials,2016,28(31):6719-6726. doi: 10.1002/adma.201506157
    [66]
    Shao Y, Li J, Li Y, et al. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films[J]. Materials Horizons,2017,4(6):1145-1150. doi: 10.1039/C7MH00441A
    [67]
    Zhang L, Wu D, Wang G, et al. An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density[J]. Chinese Chemical Letters,2021,32(2):926-931. doi: 10.1016/j.cclet.2020.06.037
    [68]
    Xia P, Zhang Z, Tang Z, et al. Preparation and electrochemical performance of three-dimensional vertically aligned graphene by unidirectional freezing method [J]. Molecules, 2022, 27(2):DOI: 10.3390/molecules27020376.
    [69]
    Liu J, Zhang Y, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials,2019,31(24):e1901261. doi: 10.1002/adma.201901261
    [70]
    Lv Q, Hao H, Ge M, et al. S-doped graphene/mixed-valent manganese oxides composite electrode with superior performance for supercapacitors[J]. Journal of Alloys and Compounds,2020,819:152970. doi: 10.1016/j.jallcom.2019.152970
    [71]
    Tarimo D J, Oyedotun K O, Mirghni A A, et al. High energy and excellent stability asymmetric supercapacitor derived from sulphur-reduced graphene oxide/manganese dioxide composite and activated carbon from peanut shell[J]. Electrochimica Acta,2020,353:136498. doi: 10.1016/j.electacta.2020.136498
    [72]
    Zou X, Zhou Y, Wang Z, et al. Free-standing, layered graphene monoliths for long-life supercapacitor[J]. Chemical Engineering Journal,2018,350:386-394. doi: 10.1016/j.cej.2018.05.136
    [73]
    Fan X, Xu H, Zuo S, et al. Preparation and supercapacitive properties of phosphorus-doped reduced graphene oxide hydrogel[J]. Electrochimica Acta,2020,330:135207. doi: 10.1016/j.electacta.2019.135207
    [74]
    Xia K, Huang Z, Zheng L, et al. Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors[J]. Journal of Power Sources,2017,365:380-388. doi: 10.1016/j.jpowsour.2017.09.008
    [75]
    Zhao Y, Hao H, Song T, et al. High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode[J]. Journal of Power Sources,2022,521:230941. doi: 10.1016/j.jpowsour.2021.230941
    [76]
    Shao Y, Sun Z, Tian Z, et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn‐ion hybrid capacitor[J]. Advanced Functional Materials,2020,31(6):2007843.
    [77]
    Wang Q, Wang S, Guo X, et al. MXene‐reduced graphene oxide aerogel for aqueous zinc‐ion hybrid supercapacitor with ultralong cycle life[J]. Advanced Electronic Materials,2019,5(12):1900537. doi: 10.1002/aelm.201900537
    [78]
    Guo D, Li Z, Wang D, et al. Design and synthesis of zinc-activated CoxNi2-xP/graphene anode for high-performance zinc ion storage device[J]. ChemSusChem,2021,14(10):2205-2215. doi: 10.1002/cssc.202100285
    [79]
    Yang J, Cao J, Peng Y, et al. Unlocking the energy storage potential of polypyrrole via electrochemical graphene oxide for high performance zinc-ion hybrid supercapacitors[J]. Journal of Power Sources,2021,516:230663. doi: 10.1016/j.jpowsour.2021.230663
    [80]
    Chen S, Yang G, Zhao X, et al. Hollow mesoporous carbon spheres for high performance symmetrical and aqueous Zinc-ion hybrid supercapacitor[J]. Frontiers in Chemistry,2020,8:663. doi: 10.3389/fchem.2020.00663
    [81]
    Wang D, Wang S, Lu Z. S‐doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc‐ion hybrid supercapacitor applications[J]. International Journal of Energy Research,2020,45(2):2498-2510.
    [82]
    Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy Storage Materials,2018,13:1-7. doi: 10.1016/j.ensm.2017.12.022
    [83]
    Zhang P, Li Y, Wang G, et al. Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability[J]. Advanced Materials,2019,31(3):e1806005. doi: 10.1002/adma.201806005
    [84]
    Wang C, Pei Z, Meng Q, et al. Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes[J]. Angewandte Chemie International Edition,2021,60(2):990-997. doi: 10.1002/anie.202012030
    [85]
    Liu P, Gao Y, Tan Y, et al. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors[J]. Nano Research,2019,12(11):2835-2841. doi: 10.1007/s12274-019-2521-6
    [86]
    Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society,2016,138(39):12894-12901. doi: 10.1021/jacs.6b05958
    [87]
    Hao J, Long J, Li B, et al. Toward high‐performance hybrid Zn‐based batteries via deeply understanding their mechanism and using electrolyte additive[J]. Advanced Functional Materials,2019,29(34):1903605. doi: 10.1002/adfm.201903605
    [88]
    Sun K E, Hoang T K, Doan T N, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J]. ACS Applied Materials & Interfaces,2017,9(11):9681-9687.
    [89]
    Zhang Q, Ma Y, Lu Y, et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries[J]. Nature Communications,2020,11(1):4463. doi: 10.1038/s41467-020-18284-0
    [90]
    Xu Z, Ma R, Wang X. Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors[J]. Energy Storage Materials,2022,46:233-242. doi: 10.1016/j.ensm.2022.01.011
    [91]
    Chang N, Li T, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy & Environmental Science,2020,13(10):3527-3535.
    [92]
    Tron A, Jeong S, Park Y D, et al. Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation[J]. ACS Sustainable Chemistry & Engineering,2019,7(17):14531-14538.
    [93]
    Li F, Yu L, Hu Q, et al. Fabricating low-temperature-tolerant and durable Zn-ion capacitors via modulation of co-solvent molecular interaction and cation solvation[J]. Science China Materials,2021,64(7):1609-1620. doi: 10.1007/s40843-020-1570-5
    [94]
    Parker J F, Chervin C N, Pala I R, et al. Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science,2017,356(6336):415-418. doi: 10.1126/science.aak9991
    [95]
    Song M, Tan H, Chao D, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials,2018,28(41):1802564. doi: 10.1002/adfm.201802564
    [96]
    Xia C, Guo J, Lei Y, et al. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate iIntercalation cathode[J]. Advanced Materials,2018,30(5):1705580. doi: 10.1002/adma.201705580
    [97]
    Zeng X, Hao J, Wang Z, et al. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes[J]. Energy Storage Materials,2019,20:410-437. doi: 10.1016/j.ensm.2019.04.022
    [98]
    Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes[J]. Joule,2019,3(5):1289-1300. doi: 10.1016/j.joule.2019.02.012
    [99]
    Han D, Wu S, Zhang S, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small,2020,16(29):e2001736. doi: 10.1002/smll.202001736
    [100]
    An G H, Hong J, Pak S, et al. 2D metal Zn nanostructure electrodes for high‐performance Zn ion supercapacitors[J]. Advanced Energy Materials,2020,10(3):1902981. doi: 10.1002/aenm.201902981
    [101]
    Yun K, Jang H, An G H. Stable anode enabled by an embossed and punched structure for a high‐rate performance Zn‐ion hybrid capacitor[J]. International Journal of Energy Research,2021,46(6):7175-7185.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article Views(712) PDF Downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return