Volume 37 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
ZHANG Ting, WANG Yu-jing, YU Ling-min, SHI Li-min, CHAI Shou-ning, HE Chi. Graphdiyne: Synthesis, modification and application of a two-dimensional carbonaceous material. New Carbon Mater., 2022, 37(6): 1089-1115. doi: 10.1016/S1872-5805(22)60653-X
Citation: ZHANG Ting, WANG Yu-jing, YU Ling-min, SHI Li-min, CHAI Shou-ning, HE Chi. Graphdiyne: Synthesis, modification and application of a two-dimensional carbonaceous material. New Carbon Mater., 2022, 37(6): 1089-1115. doi: 10.1016/S1872-5805(22)60653-X

Graphdiyne: Synthesis, modification and application of a two-dimensional carbonaceous material

doi: 10.1016/S1872-5805(22)60653-X
Funds:  National Natural Science Foundation of China (22276144, 22076151), the Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-562), and the Foundation of Key Laboratory of Education Department of Shaanxi Province of China (20JS054).
More Information
  • Graphdiyne is a new kind of two-dimensional carbonaceous material that is composed of sp and sp2 hybridized carbon atoms. The highly conjugated and adjustable carbocyclic molecular structure gives it special physicochemical properties, which also facilitate its functional modification and wide application. In the past ten years, there has been extensive theoretical and experimental research on graphdiyne, and a series of important advances has been made in many fields. The properties of graphdiyne are briefly introduced, and its main synthesis methods with different morphologies are summarized, including Glaser-Hay cross-coupling, chemical vapor deposition, van der Waals epitaxial growth, thermal explosion, interface- confined synthesis and a bipolar electrochemical method. Theoretical calculations and experimental studies on non-metal and metal atom doping and chemical group modification are summarized, and their corresponding effects on the graphdiyne properties are reviewed. Finally, urgent problems and challenges in the development of graphdiyne are discussed. This review provides fundamental information on graphdiyne and guidance for the design of its functionalized forms.
  • loading
  • [1]
    Shomali Z, Asgari R. Effects of low-dimensional material channels on energy consumption of nano-devices[J]. International Communications in Heat and Mass Transfer,2018,94:77-84. doi: 10.1016/j.icheatmasstransfer.2018.03.014
    [2]
    Chen Z, Molina-Jirón C, Klyatskaya S, et al. 1D and 2D Graphdiynes: Recent Advances on the Synthesis at Interfaces and Potential Nanotechnological Applications[J]. Annalen der Physik,2017,529(11):1700056. doi: 10.1002/andp.201700056
    [3]
    Lv Y, Wu X, Lin H, et al. A novel carbon support: Few-layered graphdiyne-decorated carbon nanotubes capture metal clusters as effective metal-supported catalysts[J]. Small,2021,17(12):e2006442. doi: 10.1002/smll.202006442
    [4]
    Qin X, Liu Y, Chi B, et al. Origins of Dirac cones and parity dependent electronic structures of alpha-graphyne derivatives and silagraphynes[J]. Nanoscale,2016,8(33):15223-15232. doi: 10.1039/C6NR03603A
    [5]
    Jia Z, Li Y, Zuo Z, et al. Synthesis and properties of 2D carbon-graphdiyne[J]. Accounts of chemical research,2017,50(10):2470-2478. doi: 10.1021/acs.accounts.7b00205
    [6]
    Yang Y, Yang Y, Xiao Y, et al. Tunable electronic structure of graphdiyne/MoS2 van der Waals heterostructure[J]. Materials Letters,2018,228:289-292. doi: 10.1016/j.matlet.2018.06.038
    [7]
    Liu D, Kim E, Weck P F, et al. Strain-controlled magnetic ordering in 2D carbon metamaterials[J]. Carbon,2020,161:219-223. doi: 10.1016/j.carbon.2020.01.053
    [8]
    Yu X, Jiajun L, Xianglin Y, et al. Preparation of graphdiyne-doped TiO2/SiO2 composite for enhanced photocatalytic activity[J]. Journal of Nanoparticle Research,2020,22(12):365. doi: 10.1007/s11051-020-05097-x
    [9]
    Sun C, Liu Y, Wang Z, et al. Self-assembled g-C3N4 nanotubes/graphdiyne composite with enhanced photocatalytic CO2 reduction[J]. Journal of Alloys and Compounds,2021,868:159045. doi: 10.1016/j.jallcom.2021.159045
    [10]
    Zhang J, Feng X. Graphdiyne electrocatalyst[J]. Joule,2018,2(8):1396-1398. doi: 10.1016/j.joule.2018.07.031
    [11]
    Cui M, Hu T, Chen L, et al. Recent progress in graphdiyne for electrocatalytic reactions[J]. ChemElectroChem,2020,7(24):4843-4852. doi: 10.1002/celc.202001313
    [12]
    Zuo Z, Wang D, Zhang J, et al. Synthesis and applications of graphdiyne-based metal-free catalysts[J]. Advanced Materials,2019,31(13):e1803762. doi: 10.1002/adma.201803762
    [13]
    Wang N, He J, Wang K, et al. Graphdiyne-based materials: Preparation and application for electrochemical energy storage[J]. Advanced Materials,2019,31(42):e1803202. doi: 10.1002/adma.201803202
    [14]
    Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials[J]. Chemical Reviews,2018,118(16):7744-7803. doi: 10.1021/acs.chemrev.8b00288
    [15]
    Matthew J, Allen, Vincent C. Tung, Kaner R B. Honeycomb carbon: A review of graphene[J]. Chemical Reviews,2010,110:132-145. doi: 10.1021/cr900070d
    [16]
    Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications[J]. Science,2002,297(5582):787-792. doi: 10.1126/science.1060928
    [17]
    KROTO. H W, ALLAF. A W, BALM S P. C60: Buckminsterfullerene[J]. Chemical Reviews,1991,91:1213-1235. doi: 10.1021/cr00006a005
    [18]
    Bunz U H F, Rubin Y, Tobe Y. Polyethynylated cyclic π-systems: scaffoldings for novel two and three-dimensional carbon networks[J]. Chemical Society Reviews,1999,28(2):107-119. doi: 10.1039/a708900g
    [19]
    Li Y, He J, Shen H. Journey from small-molecule diyne structures to 2D graphdiyne: synthetic strategies[J]. Chemistry-A European Journal,2020,26(54):12310-12321. doi: 10.1002/chem.202001898
    [20]
    Chen J, Xi J, Wang D, et al. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction[J]. The Journal of Physical Chemistry Letters,2013,4(9):1443-1448. doi: 10.1021/jz4005587
    [21]
    Torres-Pinto A, Silva C G, Faria J L, et al. Advances on Graphyne-Family Members for Superior Photocatalytic Behavior[J]. Advanced Science,2021,8(10):2003900. doi: 10.1002/advs.202003900
    [22]
    Baughman R H, Eckhardt H, Kertesz M. Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms[J]. The Journal of Chemical Phyics.,1987,87(11):6687-6699. doi: 10.1063/1.453405
    [23]
    Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications,2010,46(19):3256-3258. doi: 10.1039/b922733d
    [24]
    Xie C, Hu X, Guan Z, et al. Tuning the properties of graphdiyne by introducing electron-withdrawing/donating groups[J]. Angewandte Chemie International Edition,2020,59(32):13542-13546. doi: 10.1002/anie.202004454
    [25]
    Huang C, Zhao Y, Li Y. Graphdiyne: The Fundamentals and Application of an Emerging Carbon Material[J]. Advanced Materials,2019,31(42):e1904885. doi: 10.1002/adma.201904885
    [26]
    Sakamoto R, Fukui N, Maeda H, et al. The accelerating world of graphdiynes[J]. Advanced Materials,2019,31(42):e1804211. doi: 10.1002/adma.201804211
    [27]
    Han Y-Y, Lu X-L, Tang S-F, et al. Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride[J]. Advanced Energy Materials,2018,8(16):1703992.
    [28]
    KONG Y, LI J, ZENG S, et al. Bridging the gap between reality and ideality of graphdiyne: The advances of synthetic methodology[J]. Chemical Review,2020,6(8):1933-1951.
    [29]
    Huang C, Zhang S, Liu H, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy,2015,11:481-489. doi: 10.1016/j.nanoen.2014.11.036
    [30]
    He J, Bao K, Cui W, et al. Construction of large-area uniform graphdiyne film for high-performance lithium-ion batteries[J]. Chemistry-A European Journal,2018,24(5):1187-1192. doi: 10.1002/chem.201704581
    [31]
    Kong Y, Li X, Wang L, et al. Rapid synthesis of graphdiyne films on hydrogel at the superspreading interface for antibacteria[J]. ACS Nano,2022,16(7):11338-11345. doi: 10.1021/acsnano.2c04984
    [32]
    Zhou J, Zhang J, Liu Z. Advanced progress in the synthesis of graphdiyne[J]. Acta Physico-Chimica Sinica,2018,34(9):977-991. doi: 10.3866/PKU.WHXB201801243
    [33]
    Zhou J, Li J, Liu Z, et al. Exploring approaches for the synthesis of few-layered graphdiyne[J]. Advanced Materials,2019,31(42):e1803758. doi: 10.1002/adma.201803758
    [34]
    Li G, Li Y, Qian X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J]. The Journal of Physical Chemistry C,2011,115(6):2611-2615. doi: 10.1021/jp107996f
    [35]
    Qian X, Ning Z, Li Y, et al. Construction of graphdiyne nanowires with high-conductivity and mobility[J]. Dalton Transactions,2012,41(3):730-733. doi: 10.1039/C1DT11641J
    [36]
    Qian X, Liu H, Huang C, et al. Self-catalyzed growth of large-area nanofilms of two-dimensional carbon[J]. Scientific Reports,2015,5:7756. doi: 10.1038/srep07756
    [37]
    Xue Z, Yang H, Gao J, et al. Controlling the Interface Areas of Organic/Inorganic Semiconductor Heterojunction Nanowires for High-Performance Diodes[J]. ACS Applied Materials & Interfaces,2016,8(33):21563-21569.
    [38]
    Zhou J, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. Journal of the American Chemical Society,2015,137(24):7596-7599. doi: 10.1021/jacs.5b04057
    [39]
    Xue Y, Guo Y, Yi Y, et al. Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode[J]. Nano Energy,2016,30:858-866. doi: 10.1016/j.nanoen.2016.09.005
    [40]
    Wang H, Gao Y, Li Q, et al. Electronic structures and charge carrier mobilities of boron-graphdiyne sheet and nanoribbons[J]. Physica E:Low-dimensional Systems and Nanostructures,2020,124:114354. doi: 10.1016/j.physe.2020.114354
    [41]
    Kang J, Wu F, Li J. Modulating the bandgaps of graphdiyne nanoribbons by transverse electric fields[J]. Journal of Physics:Condensed Matter,2012,24(16):165301. doi: 10.1088/0953-8984/24/16/165301
    [42]
    Bai H, Zhu Y, Qiao W, et al. Structures, stabilities and electronic properties of graphdiyne nanoribbons[J]. RSC Advances,2011,1(5):768. doi: 10.1039/c1ra00481f
    [43]
    Zhou W, Shen H, Zeng Y, et al. Controllable synthesis of graphdiyne nanoribbons[J]. Angewandte Chemie International Edition,2020,59(12):4908-4913. doi: 10.1002/anie.201916518
    [44]
    Liu R, Gao X, Zhou J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Advanced Materials,2017,29(18):1604665. doi: 10.1002/adma.201604665
    [45]
    Gao X, Zhu Y, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy[J]. Science Advances,2018,4:eaat6378. doi: 10.1126/sciadv.aat6378
    [46]
    Zuo Z, Shang H, Chen Y, et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode[J]. Chemical Communications,2017,53(57):8074-8077. doi: 10.1039/C7CC03200E
    [47]
    Yin C, Li J, Li T, et al. Catalyst‐free synthesis of few‐layer graphdiyne using a microwave‐induced temperature gradient at a solid/liquid interface[J]. Advanced Functional Materials,2020,30(23):1001396.
    [48]
    Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of The American Chemical Society,2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776
    [49]
    Sopha H, Hromadko L, Motola M, et al. Fabrication of TiO2 nanotubes on Ti spheres using bipolar electrochemistry[J]. Electrochemistry Communications,2020:111.
    [50]
    Asoh H, Miura S, Hashimoto H. One-pot synthesis of Pt/alumina composites via AC-bipolar electrochemistry[J]. ACS Applied Nano Materials,2019,2(4):1791-1795. doi: 10.1021/acsanm.9b00268
    [51]
    Navaee A, Salimi A, Sham T-K. Bipolar electrochemistry as a powerful technique for rapid synthesis of ultrathin graphdiyne nanosheets: Improvement of photoelectrocatalytic activity toward both hydrogen and oxygen evolution[J]. International Journal of Hydrogen Energy,2021,46(24):12906-12914. doi: 10.1016/j.ijhydene.2021.01.117
    [52]
    Wang K, Wang N, He J, et al. Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors[J]. ACS Applied Materials & Interfaces,2017,9(46):40604-40613.
    [53]
    Zhang S, Wang J, Li Z, et al. Raman spectra and corresponding strain effects in graphyne and graphdiyne[J]. The Journal of Physical Chemistry C,2016,120(19):10605-10613. doi: 10.1021/acs.jpcc.5b12388
    [54]
    YANG D, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon,2009,47(1):145-152. doi: 10.1016/j.carbon.2008.09.045
    [55]
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters,2006,97(18):187401. doi: 10.1103/PhysRevLett.97.187401
    [56]
    Gu J, Magagula S, Zhao J, et al. Boosting ORR/OER Activity of Graphdiyne by Simple Heteroatom Doping[J]. Small Methods,2019,3(9):1800550. doi: 10.1002/smtd.201800550
    [57]
    Kong X, Peng Z, Jiang R, et al. Nanolayered heterostructures of N-doped TiO2 and N-doped carbon for hydrogen evolution[J]. ACS Applied Nano Materials,2020,3(2):1373-1381. doi: 10.1021/acsanm.9b02217
    [58]
    Yang Z, Shen X, Wang N, et al. Graphdiyne containing atomically precise n atoms for efficient anchoring of lithium ion[J]. ACS Applied Materials & Interfaces,2019,11(3):2608-2617.
    [59]
    Chen Y, Li J, Liu H. Preparation of Graphdiyne-organic conjugated molecular composite materials for lithium ion batteries[J]. Acta Physico-Chimica Sinica,2018,34(9):1074-1079. doi: 10.3866/PKU.WHXB201801231
    [60]
    Zhao Y, Wan J, Yao H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nature Chemistry,2018,10(9):924-931. doi: 10.1038/s41557-018-0100-1
    [61]
    Zhao Y, Yang N, Yao H, et al. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction[J]. Journal of the American Chemical Society,2019,141(18):7240-7244. doi: 10.1021/jacs.8b13695
    [62]
    Ma D W, Li T, Wang Q, et al. Graphyne as a promising substrate for the noble-metal single-atom catalysts[J]. Carbon,2015,95:756-765. doi: 10.1016/j.carbon.2015.09.008
    [63]
    Liu X, Tang W, Liu S, et al. CO oxidation on Ni and Cu embedded graphdiyne as efficient noble metal-free catalysts: A first-principles density-functional theory investigation[J]. Applied Surface Science,2021,539:148287. doi: 10.1016/j.apsusc.2020.148287
    [64]
    Li X. Design of novel graphdiyne-based materials with large second-order nonlinear optical properties[J]. Journal of Materials Chemistry C,2018,6(28):7576-7583. doi: 10.1039/C8TC02146E
    [65]
    Shehzadi K, Ayub K, Mahmood T. Theoretical study on design of novel superalkalis doped graphdiyne: A new donor–acceptor (D-π-A) strategy for enhancing NLO response[J]. Applied Surface Science,2019,492:255-263. doi: 10.1016/j.apsusc.2019.06.221
    [66]
    Yin X P, Wang H J, Tang S F, et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2018,57(30):9382-9386. doi: 10.1002/anie.201804817
    [67]
    Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature Communications,2018,9(1):1460. doi: 10.1038/s41467-018-03896-4
    [68]
    Wang X, Yang Z, Si W, et al. Cobalt-nitrogen-doped graphdiyne as an efficient bifunctional catalyst for oxygen reduction and hydrogen evolution reactions[J]. Carbon,2019,147:9-18. doi: 10.1016/j.carbon.2019.02.033
    [69]
    Chen Y, Li J, Wang F, et al. Chemical modification: Toward solubility and processability of graphdiyne[J]. Nano Energy,2019,64:103932. doi: 10.1016/j.nanoen.2019.103932
    [70]
    Guo J, Guo M, Wang F, et al. Graphdiyne: structure of fluorescent quantum dots[J]. Angewandte Chemie International Edition,2020,59(38):16712-16716. doi: 10.1002/anie.202006891
    [71]
    Thangavel S, Krishnamoorthy K, Krishnaswamy V, et al. Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material[J]. The Journal of Physical Chemistry C,2015,119(38):22057-22065. doi: 10.1021/acs.jpcc.5b06138
    [72]
    Dong Y, Zhao Y, Chen Y, et al. Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity[J]. Journal of Materials Science,2018,53(12):8921-8932. doi: 10.1007/s10853-018-2210-y
    [73]
    Lin Y, Liu H, Yang C, et al. Gama-graphyne as photogenerated electrons transfer layer enhances photocatalytic performance of silver phosphate[J]. Applied Catalysis B:Environmental,2020,264:118479. doi: 10.1016/j.apcatb.2019.118479
    [74]
    Huo B, Meng F, Yang J, et al. High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: Mechanism and toxicity evaluation[J]. Chemical Engineering Journal,2022,436:135173. doi: 10.1016/j.cej.2022.135173
    [75]
    Zhang J, Bai Q, Bi X, et al. Piezoelectric enhanced peroxidase-like activity of metal-free sulfur doped graphdiyne nanosheets for efficient water pollutant degradation and bacterial disinfection[J]. Nano Today,2022,43:101429. doi: 10.1016/j.nantod.2022.101429
    [76]
    Li J, Zhong L, Tong L, et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction[J]. Advanced Functional Materials,2019,29(43):1905423. doi: 10.1002/adfm.201905423
    [77]
    Xu F, Meng K, Zhu B, et al. Graphdiyne: A new photocatalytic CO2 reduction cocatalyst[J]. Advanced Functional Materials,2019,29(43):1904256. doi: 10.1002/adfm.201904256
    [78]
    Cao S, Wang Y, Zhu B, et al. Enhanced photochemical CO2 reduction in the gas phase by graphdiyne[J]. Journal of Materials Chemistry A,2020,8(16):7671-7676. doi: 10.1039/D0TA02256J
    [79]
    Shi G, Xie Y, Du L, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4[J]. Angewandte Chemie International Edition,2022,61(23):e202203569.
    [80]
    Sun M, Huang B. Flexible modulations on selectivity of syngas formation via CO2 reduction on atomic catalysts[J]. Nano Energy,2022,99:107382. doi: 10.1016/j.nanoen.2022.107382
    [81]
    Chang Y-B, Zhang C, Lu X-L, et al. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products[J]. Nano Research,2021,15(1):195-201.
    [82]
    Khan S, Sajid H, Ayub K, et al. High sensitivity of graphdiyne nanoflake toward detection of phosgene, thiophosgene and phosogenoxime; a first-principles study[J]. Journal of Molecular Graphics & Modelling,2020,100:107658.
    [83]
    Yan H, Guo S, Wu F, et al. Carbon atom hybridization matters: ultrafast humidity response of graphdiyne oxides[J]. Angewandte Chemie International Edition,2018,57(15):3922-3926. doi: 10.1002/anie.201709417
    [84]
    Mashhadzadeh A H, Vahedi A M, Ardjmand M, et al. Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study[J]. Superlattices and Microstructures,2016,100:1094-1102. doi: 10.1016/j.spmi.2016.10.079
    [85]
    Li Y, Huang H, Cui R, et al. Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water[J]. Sensors and Actuators: B. Chemical,2021,332:129519. doi: 10.1016/j.snb.2021.129519
    [86]
    Guo X, Li Y, Huang H, et al. Triazine-graphdiyne with well-defined two kinds of active sites for simultaneous detection of Pb2+ and Cd2+[J]. Journal of Environmental Chemical Engineering,2022,10(2):107159. doi: 10.1016/j.jece.2022.107159
    [87]
    Wu L, Gao J, Lu X, et al. Graphdiyne: A new promising member of 2D all-carbon nanomaterial as robust electrochemical enzyme biosensor platform[J]. Carbon,2020,156:568-575. doi: 10.1016/j.carbon.2019.09.086
    [88]
    Niu K, Gao J, Wu L, et al. Nitrogen-doped graphdiyne as a robust electrochemical biosensing platform for ultrasensitive detection of environmental pollutants[J]. Analytical Chemistry,2021,93(24):8656-8662. doi: 10.1021/acs.analchem.1c01800
    [89]
    Gu Q, Wang Z, Qiao L, et al. Nitrogen-doped graphdiyne quantum dots for electrochemical chloramphenicol quantification in water[J]. ACS Applied Nano Materials,2021,4(11):12755-12765. doi: 10.1021/acsanm.1c03404
    [90]
    Feng X, Zong Z, Elsaidi S K, et al. Kr/Xe Separation over a chabazite zeolite membrane[J]. Journal of the American Chemical Society,2016,138(31):9791-9794. doi: 10.1021/jacs.6b06515
    [91]
    Liu J, Thallapally P K, Strachan D. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants[J]. Langmuir,2012,28(31):11584-11589. doi: 10.1021/la301870n
    [92]
    Zhang P, Song Q, Zhuang J, et al. First-principles study of gas adsorption on γ-graphyne[J]. Chemical Physics Letters,2017,689:185-189. doi: 10.1016/j.cplett.2017.10.026
    [93]
    Fang L, Cao Z. Isoelectronic doping and external electric field regulate the gas-separation performance of graphdiyne[J]. The Journal of Physical Chemistry C,2020,124(4):2712-2720. doi: 10.1021/acs.jpcc.9b11062
    [94]
    Chen X, Gao P, Guo L, et al. High-efficient physical adsorption and detection of formaldehyde using Sc- and Ti-decorated graphdiyne[J]. Physics Letters A,2017,381(9):879-885. doi: 10.1016/j.physleta.2017.01.009
    [95]
    Vazhappilly T, Ghanty T K. The effect of doping on adsorption of Xe and Kr on graphyne and graphdiyne[J]. Materials Today Communications,2020,22:100738. doi: 10.1016/j.mtcomm.2019.100738
    [96]
    Zhou Z, Tan Y, Yang Q, et al. Gas permeation through graphdiyne-based nanoporous membranes[J]. Nature Communications,2022,13(1):4031. doi: 10.1038/s41467-022-31779-2
    [97]
    Gao X, Zhou J, Du R, et al. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for oil/water separation[J]. Advanced Materials,2016,28(1):168-173. doi: 10.1002/adma.201504407
    [98]
    Banan Baghbani N, Azamat J, Erfan-Niya H, et al. Molecular insights into water desalination performance of pristine graphdiyne nanosheet membrane[J]. Journal of Molecular Graphics and Modelling,2020,101:107729. doi: 10.1016/j.jmgm.2020.107729
    [99]
    Qiu H, Xue M, Shen C, et al. Graphynes for water desalination and gas separation[J]. Advanced Materials,2019,31(42):e1803772. doi: 10.1002/adma.201803772
    [100]
    Li J, Chen Y, Gao J, et al. Graphdiyne sponge for direct collection of oils from water[J]. ACS Applied Materials & Interfaces,2019,11(3):2591-2598.
    [101]
    Zhao F, Li X, He J, et al. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries[J]. Chemical Engineering Journal,2021,413:127486. doi: 10.1016/j.cej.2020.127486
    [102]
    Gao L, Ge X, Zuo Z, et al. High quality pyrazinoquinoxaline-based graphdiyne for efficient gradient storage of lithium ions[J]. Nano Letters,2020,20(10):7333-7341. doi: 10.1021/acs.nanolett.0c02728
    [103]
    Farokh Niaei A H, Hussain T, Hankel M, et al. Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries[J]. Journal of Power Sources,2017,343:354-363. doi: 10.1016/j.jpowsour.2017.01.027
    [104]
    Zhang S, He J, Zheng J, et al. Porous graphdiyne applied for sodium ion storage[J]. Journal of Materials Chemistry A,2017,5(5):2045-2051. doi: 10.1039/C6TA09822C
    [105]
    Yi Y, Li J, Zhao W, et al. Temperature-mediated engineering of graphdiyne framework enabling high-performance potassium storage[J]. Advanced Functional Materials,2020,30(31):2003039. doi: 10.1002/adfm.202003039
    [106]
    Wang F, Xiong Z, Jin W, et al. Graphdiyne oxide for aqueous zinc ion full battery with ultra-long cycling stability[J]. Nano Today,2022,44:101463. doi: 10.1016/j.nantod.2022.101463
    [107]
    Li J, Chen Y, Guo J, et al. Graphdiyne oxide‐based high‐performance rechargeable aqueous Zn–MnO2 battery[J]. Advanced Functional Materials,2020,30(42):2004115. doi: 10.1002/adfm.202004115
    [108]
    Yang Q, Li L, Hussain T, et al. Stabilizing interface ph by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries[J]. Angewandte Chemie International Edition,2022,61(6):e202112304.
    [109]
    Wang F, Zuo Z, Shang H, et al. Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode[J]. ACS Applied Materials & Interfaces,2019,11(3):2599-2607.
    [110]
    Yue Y, Xu Y, Kong F, et al. Bulk-synthesis and supercapacitive energy storage applications of nanoporous triazine-based graphdiyne[J]. Carbon,2020,167:202-208. doi: 10.1016/j.carbon.2020.06.001
    [111]
    Jin Z, Yuan M, Li H, et al. Graphdiyne: An efficient hole transporter for stable high-performance colloidal quantum dot solar cells[J]. Advanced Functional Materials,2016,26(29):5284-5289. doi: 10.1002/adfm.201601570
    [112]
    Li J, Jian H, Chen Y, et al. Studies of graphdiyne-ZnO nanocomposite material and application in polymer solar cells[J]. Solar RRL,2018,2(11):1800211. doi: 10.1002/solr.201800211
    [113]
    Gao Y, Xue Y, Li Y. Two-dimensional graphdiyne/metal hydroxide heterojunction for high-efficiency oxygen evolution reaction[J]. Scientia Sinica Chimica,2021,52(2):321-329.
    [114]
    Yin X P, Luo S W, Tang S F, et al. In situ synthesis of a nickel boron oxide/graphdiyne hybrid for enhanced photo/electrocatalytic H2 evolution[J]. Chinese Journal of Catalysis,2021,42(8):1379-1386. doi: 10.1016/S1872-2067(20)63601-4
    [115]
    Yao Y, Zhu Y, Pan C, et al. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution[J]. Journal of the American Chemical Society,2021,143(23):8720-8730. doi: 10.1021/jacs.1c02831
    [116]
    Xing C, Xue Y, Huang B, et al. Fluorographdiyne: A metal-free catalyst for applications in water reduction and oxidation[J]. Angewandte Chemie International Edition,2019,58(39):13897-13903. doi: 10.1002/anie.201905729
    [117]
    Gao Y, Cai Z, Wu X, et al. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations[J]. ACS Catalysis,2018,8(11):10364-10374. doi: 10.1021/acscatal.8b02360
    [118]
    Liu J, Shen X, Baimanov D, et al. Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection[J]. ACS Applied Materials & Interfaces,2019,11(3):2647-2654.
    [119]
    Liu J, Chen C, Zhao Y. Progress and prospects of graphdiyne-based materials in biomedical applications[J]. Advanced Materials,2019,31(42):e1804386. doi: 10.1002/adma.201804386
    [120]
    Zhang Y, Liu W, Li Y, et al. 2D graphdiyne oxide serves as a superior new generation of Antibacterial Agents[J]. iScience,2019,19:662-675. doi: 10.1016/j.isci.2019.08.019
    [121]
    Qin S, Xie M, Cao S, et al. Insight into the antibacterial resistance of graphdiyne functionalized by silver nanoparticles[J]. Cell Proliferation,2022,55(5):e13236.
    [122]
    Bai Q, Liang M, Wu W, et al. Plasmonic nanozyme of graphdiyne nanowalls wrapped hollow copper sulfide nanocubes for rapid bacteria‐killing[J]. Advanced Functional Materials,2022,32(20):2112683. doi: 10.1002/adfm.202112683
    [123]
    Bai Q, Luo H, Shi S, et al. AuAg nanocages/graphdiyne for rapid elimination and detection of trace pathogenic bacteria[J]. Journal of Colloid and Interface Science,2022,613:376-383. doi: 10.1016/j.jcis.2022.01.046
    [124]
    Li S, Chen Y, Liu H, et al. Graphdiyne materials as nanotransducer for in vivo photoacoustic imaging and photothermal therapy of tumor[J]. Chemistry of Materials,2017,29(14):6087-6094. doi: 10.1021/acs.chemmater.7b01965
    [125]
    Jin J, Guo M, Liu J, et al. Graphdiyne nanosheet-based drug delivery platform for photothermal/chemotherapy combination treatment of cancer[J]. ACS Applied Materials & Interfaces,2018,10(10):8436-8442.
    [126]
    Min H, Qi Y, Zhang Y, et al. A graphdiyne oxide-based iron sponge with photothermally enhanced tumor-specific fenton chemistry[J]. Advanced Materials,2020,32(31):e2000038. doi: 10.1002/adma.202000038
    [127]
    Guo M, Liu J, Chen X, et al. Graphdiyne oxide nanosheets reprogram immunosuppressive macrophage for cancer immunotherapy[J]. Nano Today,2022,45:101543. doi: 10.1016/j.nantod.2022.101543
    [128]
    Xie J, Wang N, Dong X, et al. Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection[J]. ACS Applied Materials & Interfaces,2019,11(3):2579-2590.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article Views(1268) PDF Downloads(179) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return