Volume 38 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
CHENG Zhong-fu, WU Xue-yan, LIU Lei, HE Long, YANG Zu-guo, CAO Chang, LU Yan, GUO Ji-xi. A highly efficient, rapid, room temperature synthesis method for coal-based water-soluble fluorescent carbon dots and its use in Fe3+ ion detection. New Carbon Mater., 2023, 38(6): 1104-1115. doi: 10.1016/S1872-5805(23)60706-1
Citation: CHENG Zhong-fu, WU Xue-yan, LIU Lei, HE Long, YANG Zu-guo, CAO Chang, LU Yan, GUO Ji-xi. A highly efficient, rapid, room temperature synthesis method for coal-based water-soluble fluorescent carbon dots and its use in Fe3+ ion detection. New Carbon Mater., 2023, 38(6): 1104-1115. doi: 10.1016/S1872-5805(23)60706-1

A highly efficient, rapid, room temperature synthesis method for coal-based water-soluble fluorescent carbon dots and its use in Fe3+ ion detection

doi: 10.1016/S1872-5805(23)60706-1
More Information
  • Author Bio:

    程仲富,硕士,副研究员. E-mail:chengzf136@163.com

  • Corresponding author: GUO Ji-xi. E-mail: jxguo1012@163.com
  • Received Date: 2020-07-07
  • Rev Recd Date: 2020-08-20
  • Available Online: 2022-11-03
  • Publish Date: 2023-11-23
  • We report a method for the of coal-based fluorescent carbon dots (CDs) at room temperature using a mixture of hydrogen peroxide (H2O2) and formic acid (HCOOH) as the oxidant instead of concentrated HNO3 or H2SO4. The CDs have an excitation dependent behavior with a high quantum yield (QY) of approximately 7.2%. The CDs are water soluble and have excellent photo-stability, good resistance to salt solutions, and are insensitive to pH in a range of 2.0-12.0. The CDs were used as a very sensitive probe for the turn-off sensing of Fe3+ ion with a detection limit as low as 600 nmol/L and a detection range from 2 to 100 μmol/L. This work provides a way for the high value-added utilization of coal.
  • loading
  • [1]
    Kroto H, Heath J, Brien S, et al. C60: Buckminsterfullerene[J]. Nature,1985,318:162-163. doi: 10.1038/318162a0
    [2]
    Lijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58. doi: 10.1038/354056a0
    [3]
    Novoselov K, Geiml A, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669. doi: 10.1126/science.1102896
    [4]
    Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2004,126:12736-12737. doi: 10.1021/ja040082h
    [5]
    Sun Y, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128:7756-7757. doi: 10.1021/ja062677d
    [6]
    Li R, Zhao Z, Leng C, et al. Preparation of carbon dots from carbonized corncobs by electrochemical oxidation and their application in Na-batteries[J]. New Carbon Materials,2023,38:347-355. doi: 10.1016/S1872-5805(22)60644-9
    [7]
    Gao T, Wang X, Yang L, et al. Red, yellow, and blue luminescence by graphene quantum dots: Syntheses, mechanism, and cellular imaging[J]. ACS Applied Materials & Interfaces,2017,9:24846-24856.
    [8]
    Li K, Liu G, Zheng L, et al. Coal-derived carbon nanomaterials for sustainable energy storage applications[J]. New Carbon Materials,2021,36:133-154. doi: 10.1016/S1872-5805(21)60010-0
    [9]
    Hou H, Banks C, Jing M, et al. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life[J]. Advanced Materials,2015,27:7861-7866. doi: 10.1002/adma.201503816
    [10]
    Hou S, Zhou S, Zhang S, et al. Carbon-dot-based solid-state luminescent materials: Synthesis and applications in white light emitting diodes and optical sensors[J]. New Carbon Materials,2021,36:527-545. doi: 10.1016/S1872-5805(21)60042-2
    [11]
    Shao X, Wu W, Wang R, et al. Engineering surface structure of petroleum-coke-derived carbon dots to enhance electron transfer for photooxidation[J]. Journal of Catalysis,2016,344:236-241. doi: 10.1016/j.jcat.2016.09.006
    [12]
    Chua C, Sofer Z, Šimek P, et al. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene[J]. ACS Nano,2015,9:2548-2555. doi: 10.1021/nn505639q
    [13]
    Kim S, Hwang S, Kim M, et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape[J]. ACS Nano,2012,6:8203-8208. doi: 10.1021/nn302878r
    [14]
    Li L, Wu G, Yang G, et al. Focusing on luminescent graphene quantum dots: current status and future perspectives[J]. Nanoscale,2013,5:4105-4039. doi: 10.1039/c2nr33242f
    [15]
    Shinde D, Pillai V. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes[J]. Chemistry European Journal,2012,18:12522-12528. doi: 10.1002/chem.201201043
    [16]
    Peng J, Gao W, Gupta B, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letter,2012,12:844-849. doi: 10.1021/nl2038979
    [17]
    Wu M, Wang Y, Wu W, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon,2014,78:480-489. doi: 10.1016/j.carbon.2014.07.029
    [18]
    Karfa P, Roy E, Patra S, et al. Amino acid derived highly luminescent, heteroatom-doped carbon dots for label-free detection of Cd2+/Fe3+, cell imaging and enhanced antibacterial activity[J]. RSC Advances,2015,5:58141-58153. doi: 10.1039/C5RA09525E
    [19]
    Essner J, Laber C, Ravula S, et al. Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine[J]. Green Chemistry,2016,18:243-250. doi: 10.1039/C5GC02032H
    [20]
    Lu Q, Wu C, Liu D, et al. A facile and simple method for synthesis of graphene oxide quantum dots from black carbon[J]. Green Chemistry,2017,19:900-904. doi: 10.1039/C6GC03092K
    [21]
    Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications,2012,48:380-382. doi: 10.1039/C1CC15678K
    [22]
    Mehta V, Jha S, Basu H, et al. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells[J]. Sensors and Actuators B,2015,213:434-443. doi: 10.1016/j.snb.2015.02.104
    [23]
    Lu W, Qin X, Liu S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(II) ions[J]. Analytical Chemistry,2012,84:5351-5357. doi: 10.1021/ac3007939
    [24]
    Zhou J, Sheng Z, Han H, et al. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source[J]. Material Letter,2012,66:222-224. doi: 10.1016/j.matlet.2011.08.081
    [25]
    Alam A, Park B, Ghouri Z, et al. Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications[J]. Green Chemistry,2015,17:3791-3797. doi: 10.1039/C5GC00686D
    [26]
    Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials,2011,23:776-780. doi: 10.1002/adma.201003819
    [27]
    Wang X, Qu K, Xu B, et al. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents[J]. Journal of Materials Chemistry,2011,21:2445-2450. doi: 10.1039/c0jm02963g
    [28]
    Zhu H, Wang X, Li Y, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chemical Communications,2009:5118-5120.
    [29]
    Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon,2011,49:605-609. doi: 10.1016/j.carbon.2010.10.004
    [30]
    Zhang Z, Hao J, Zhang J, et al. Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route[J]. RSC Advances,2012,2:8599-8601. doi: 10.1039/c2ra21217j
    [31]
    Lu S, Sui L, Liu J, et al. Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence[J]. Advanced Materials,2017,29:1603443. doi: 10.1002/adma.201603443
    [32]
    Levine D, Schlosberg R, Silbernagel B. Understanding the chemistry and physics of coal structure (A Review)[J]. Proceedings of the National Academy of Sciences of the United States of America,1982,79:3365-3370.
    [33]
    Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon,2001,39:1821-1833. doi: 10.1016/S0008-6223(00)00318-3
    [34]
    Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection[J]. Small,2014,10:4926-4933. doi: 10.1002/smll.201401328
    [35]
    Ye R, Xiang C, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications,2013,4:2943-2948. doi: 10.1038/ncomms3943
    [36]
    Dong Y, Lin J, Chen Y, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale,2014,6:7410-7415. doi: 10.1039/C4NR01482K
    [37]
    Ye R, Peng Z, Metzger A, et al. Bandgap engineering of coal-derived graphene quantum dots[J]. ACS Applied Materials & Interfaces,2015,7:7041-7048.
    [38]
    Hu S, Wei Z, Chang Q, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Applied Surface Science,2016,378:402-407. doi: 10.1016/j.apsusc.2016.04.038
    [39]
    Li M, Yu C, Hu C, et al. Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield[J]. Chemical Engineering Journal,2017,320:570-575. doi: 10.1016/j.cej.2017.03.090
    [40]
    Meng X, Chang Q, Xue C, et al. Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties[J]. Chemical Communications,2017,53:3074-3077. doi: 10.1039/C7CC00461C
    [41]
    Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors and bioimaging[J]. Angewandte Chemie International Edition,2013,125:4045-4049.
    [42]
    Kang H, Zheng J, Liu X, et al. Phosphorescent carbon dots: Microstructure design, synthesis and applications[J]. New Carbon Materials,2021,36:649-664. doi: 10.1016/S1872-5805(21)60083-5
    [43]
    Li J, Zuo G, Qi X, et al. Selective determination of Ag+ using Salecan derived nitrogen doped carbon dots as a fluorescent probe[J]. Materials Science & Engineering C,2017,77:508-512.
    [44]
    Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. Journal of the American Chemical Society,2011,134:15-18.
    [45]
    Dong Y, Wang R, Li G, et al. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions[J]. Analytical Chemistry,2012,84:6220-6224. doi: 10.1021/ac3012126
    [46]
    Yu J, Xu C, Tian Z, et al. Facilely synthesized N-doped carbon quantum dots with high fluorescent yield for sensing Fe3+[J]. New Journal of Chemistry,2016,40:2083-2088. doi: 10.1039/C5NJ03252K
    [47]
    Xia Y, Mokaya R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method[J]. Advanced Materials,2004,16:1553-1558. doi: 10.1002/adma.200400391
    [48]
    Bai L, Qiao S, Li H, et al. N-doped carbon dot with surface dominant non-linear optical properties[J]. RSC Advances,2016,6:95476-95482. doi: 10.1039/C6RA18837K
    [49]
    Li X, Zhang S, Kulinich S, et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Scientific Reports,2014,4:4976. doi: 10.1038/srep04976
    [50]
    Lin L, Rong M, Lu S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale,2015,7:1872-1878. doi: 10.1039/C4NR06365A
    [51]
    Zhu S, Tang S, Zhang J, et al. Control the size and surface chemistry of graphene for the rising fluorescent materials[J]. Chemical Communications,2012,48:4527-4539. doi: 10.1039/c2cc31201h
    [52]
    Li M, Cushing S, Zhou X, et al. Fingerprinting photoluminescence of functional groups in graphene oxide[J]. Journal of Materials Chemistry,2012,22:23374-23379. doi: 10.1039/c2jm35417a
    [53]
    Wu Z, Zhang P, Gao M, et al. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from bombyx mori silk–natural proteins[J]. Journal of Materials Chemistry B,2013,1:2868-2873. doi: 10.1039/c3tb20418a
    [54]
    Wu Z, Gao M, Wang T, et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene qquantum dots[J]. Nanoscale,2014,6:3868-3874. doi: 10.1039/C3NR06353D
    [55]
    Yuan Y, Li R, Wang Q, et al. Germanium-doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury(II) ions into cancer cells[J]. Nanoscale,2015,7:16841-16847. doi: 10.1039/C5NR05326A
    [56]
    Dong Y, Chen C, Lin J, et al. Electrochemiluminescence emission from carbon quantum dot-sulfite coreactant system[J]. Carbon,2013,56:12-17. doi: 10.1016/j.carbon.2012.12.086
    [57]
    Shang J, Ma L, Li J, et al. The origin of fluorescence from graphene oxide[J]. Scientific Reports,2012,2:792. doi: 10.1038/srep00792
    [58]
    Liu Z, Wu Z, Gao M, et al. Carbon dots with aggregation induced emission enhancement for visual permittivity detection[J]. Chemical Communications,2016,52:2063-2066. doi: 10.1039/C5CC08635C
    [59]
    Pan D, Zhang J, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials,2010,22:734-738. doi: 10.1002/adma.200902825
    [60]
    Liu Y, Xiao N, Gong N, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes[J]. Carbon,2014,68:258-264. doi: 10.1016/j.carbon.2013.10.086
    [61]
    Tan J, Zhang J, Li W, et al. Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications[J]. Journal of Materials Chemistry C,2016,4:10146-10153. doi: 10.1039/C6TC03027K
    [62]
    Liu H, He Z, Jiang L, et al. Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications[J]. ACS Applied Materials & Interfaces,2015,7:4913-4920.
    [63]
    Wesp E, Brode W. The absorption spectra of ferric compounds. I. The ferric chloride-phenol reaction[J]. Journal of the American Chemical Society,1934,56:1037-1042. doi: 10.1021/ja01320a009
    [64]
    Zheng M, Xie Z, Qu D, et al. On–off–on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect[J]. ACS Applied Materials & Interfaces,2013,5:13242-13247.
    [65]
    Wang J, Li R, Zhang H, et al. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process[J]. Biosensors & Bioelectronics,2017,97:157-163.
    [66]
    Wu X, Sun S, Wang Y, et al. A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells[J]. Biosensors & Bioelectronics,2017,90:501-507.
    [67]
    Zhang Y, He Y, Cui P, et al. Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg2+ in aqueous solution[J]. RSC Advances,2015,5:40393-40401. doi: 10.1039/C5RA04653J
    [68]
    Zhang Y, Cui P, Zhang F, et al. Fluorescent probes for “off–on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots[J]. Talanta,2016,152:288-300. doi: 10.1016/j.talanta.2016.02.018
    [69]
    Li S, Li Y, Cao J, et al. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+[J]. Analytical Chemistry,2014,86:10201-10207. doi: 10.1021/ac503183y
    [70]
    Wang D, Wang L, Dong X, et al. Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection[J]. Carbon,2012,50:2147-2154. doi: 10.1016/j.carbon.2012.01.021
    [71]
    Fang L Y, Zheng J T. Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure[J]. New Carbon Materials,2021,36(3):625-631. doi: 10.1016/S1872-5805(21)60031-8
  • -20230609Supporting Information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(274) PDF Downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return