Volume 38 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Majid Shaker, Ali Asghar Sadeghi Ghazvini, Taieb Shahalizade, Mehran Ali Gaho, Asim Mumtaz, Shayan Javanmardi, Reza Riahifar, MENG Xiao-min, JIN Zhan, GE Qi. A review of nitrogen-doped carbon materials for lithium-ion battery anodes. New Carbon Mater., 2023, 38(2): 247-282. doi: 10.1016/S1872-5805(23)60724-3
Citation: Majid Shaker, Ali Asghar Sadeghi Ghazvini, Taieb Shahalizade, Mehran Ali Gaho, Asim Mumtaz, Shayan Javanmardi, Reza Riahifar, MENG Xiao-min, JIN Zhan, GE Qi. A review of nitrogen-doped carbon materials for lithium-ion battery anodes. New Carbon Mater., 2023, 38(2): 247-282. doi: 10.1016/S1872-5805(23)60724-3

A review of nitrogen-doped carbon materials for lithium-ion battery anodes

doi: 10.1016/S1872-5805(23)60724-3
More Information
  • Corresponding author:

    Majid Shaker. E-mail: majidshacker@outlook.com

  • Received Date: 2022-11-26
  • Rev Recd Date: 2023-02-11
  • Available Online: 2023-02-17
  • Publish Date: 2023-04-07
  • One of the most important research areas related to Li-ion batteries is the replacement of the graphite anode with other carbon materials such as hard carbons, activated carbons, carbon nanotubes, graphene, porous carbons, and carbon fibers. Although such materials have shown better electrochemical performance for lithium storage compared to graphite, there is plenty of room for improvement. One of the most effective approaches is to dope heteroatoms (e. g. nitrogen) in the structure of the carbon materials to improve their electrochemical performance when they are used as anode materials. We first describe how N-doping has a positive effect on lithium storage and then provide numerous selected examples of this approach being applied to various carbon materials. The characterization of N doped in the structure of different carbon materials by X-ray photoelectron spectroscopy and scanning tunneling microscopy is then presented since they are able to characterize the N in these structures with a high (atomic) resolution. Finally, a statistical analysis is performed to show how the amount of doped N affects the specific capacity of the N-doped carbon materials.

  • loading
  • [1]
    Arbabzadeh M, Johnson J X, Keoleian G A, et al. Twelve principles for green energy storage in grid applications[J]. Environmental science & technology,2016,50(2):1046-1055.
    [2]
    Manthiram A. An outlook on lithium ion battery technology[J]. ACS central science,2017,3(10):1063-1069. doi: 10.1021/acscentsci.7b00288
    [3]
    Shaker M, Ghazvini A A S, Yaghmaee M S, et al. Prediction of size- and shape-dependent lithium storage capacity of carbon nano-spheres (quantum dots)[J]. Journal of Nanoparticle Research,2021,23(8):176. doi: 10.1007/s11051-021-05306-1
    [4]
    Song Z, Wang X, Lv C, et al. Kirigami-based stretchable lithium-ion batteries[J]. Scientific reports,2015,5(1):1-9. doi: 10.9734/JSRR/2015/14076
    [5]
    Jha M K, Kumari A, Jha A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste management,2013,33(9):1890-1897. doi: 10.1016/j.wasman.2013.05.008
    [6]
    Scrosati B, Hassoun J, Sun Y-K. Lithium-ion batteries. A look into the future[J]. Energy & Environmental Science,2011,4(9):3287-3295.
    [7]
    Ghorbanzadeh M, Allahyari E, Riahifar R, et al. Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0. 2Ni0. 13Co0. 13Mn054]O2 for Li-ion battery[J]. Journal of Solid State Electrochemistry,2018,22(4):1155-1163. doi: 10.1007/s10008-017-3824-8
    [8]
    Allahyari E, Ghorbanzadeh M, Riahifar R, et al. Electrochemical performance of NCM/LFP/Al composite cathode materials for lithium-ion batteries[J]. Materials Research Express,2018,5(5):055503. doi: 10.1088/2053-1591/aac0c7
    [9]
    Marincaş A H, Goga F, Dorneanu S A, et al. Review on synthesis methods to obtain LiMn2O4-based cathode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2020,24(3):473-497. doi: 10.1007/s10008-019-04467-3
    [10]
    Pang P, Wang Z, Tan X, et al. LiCoO2@ LiNi0. 45Al0. 05Mn05O2 as high-voltage lithium-ion battery cathode materials with improved cycling performance and thermal stability[J]. Electrochimica Acta,2019,327:135018. doi: 10.1016/j.electacta.2019.135018
    [11]
    Moradi B, Botte G G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry,2016,46(2):123-148. doi: 10.1007/s10800-015-0914-0
    [12]
    Shaker M, Ghazvini A A S, Qureshi F R, et al. A criterion combined of bulk and surface lithium storage to predict the capacity of porous carbon lithium-ion battery anodes: lithium-ion battery anode capacity prediction[J]. Carbon Letters,2021,31(5):985-990. doi: 10.1007/s42823-020-00210-5
    [13]
    Zhang H, Yang Y, Ren D, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials,2021,36:147-170. doi: 10.1016/j.ensm.2020.12.027
    [14]
    Gong X, Zheng Y, Zheng J, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. ChemElectroChem,2020,7(6):1465-1472. doi: 10.1002/celc.201902098
    [15]
    Park T-H, Yeo J-S, Seo M-H, et al. Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries[J]. Electrochimica Acta,2013,93:236-240. doi: 10.1016/j.electacta.2012.12.124
    [16]
    Cheng Q, Yuge R, Nakahara K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources,2015,284:258-263. doi: 10.1016/j.jpowsour.2015.03.036
    [17]
    Lu W, López C M, Liu N, et al. Overcharge effect on morphology and structure of carbon electrodes for lithium-ion batteries[J]. Journal of The Electrochemical Society,2012,159(5):A566. doi: 10.1149/2.jes035205
    [18]
    Nitta N, Yushin G. High‐capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles[J]. Particle & Particle Systems Characterization,2014,31(3):317-336.
    [19]
    Wang H, Tan H, Luo X, et al. The progress on aluminum-based anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A,2020,8(48):25649-25662. doi: 10.1039/D0TA09762D
    [20]
    Hu R, Liu H, Zeng M, et al. Progress on Sn-based thin-film anode materials for lithium-ion batteries[J]. Chinese Science Bulletin,2012,57(32):4119-4130. doi: 10.1007/s11434-012-5303-z
    [21]
    Yang W, Zhang X, Tan H, et al. Gallium-based anodes for alkali metal ion batteries[J]. Journal of Energy Chemistry,2021,55:557-571. doi: 10.1016/j.jechem.2020.07.035
    [22]
    Hu L, Lin X M, Mo J T, et al. Lead-Based Metal-Organic Framework with Stable Lithium Anodic Performance[J]. Inorganic Chemistry,2017,56(8):4289-4295. doi: 10.1021/acs.inorgchem.6b02663
    [23]
    Jung H, Allan P K, Hu Y Y, et al. Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-ion batteries[J]. Chemistry of materials,2015,27(3):1031-1041. doi: 10.1021/cm504312x
    [24]
    He J, Wei Y, Zhai T, et al. Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries[J]. Materials Chemistry Frontiers,2018,2(3):437-455. doi: 10.1039/C7QM00480J
    [25]
    Yin S Y, Song L, Wang X Y, et al. Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction[J]. Electrochimica Acta,2009,54(24):5629-5633. doi: 10.1016/j.electacta.2009.04.067
    [26]
    Huang B, Li X, Pei Y, et al. Novel carbon‐encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability[J]. Small,2016,12(14):1945-1955. doi: 10.1002/smll.201503419
    [27]
    Zhang L, Wu H B, Lou X W. Iron-oxide-based advanced anode materials for lithium‐ion batteries[J]. Advanced Energy Materials,2014,4(4):1300958. doi: 10.1002/aenm.201300958
    [28]
    Khalil A, Lalia B S, Hashaikeh R. Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship[J]. Journal of Materials Science,2016,51(14):6624-6638. doi: 10.1007/s10853-016-9946-z
    [29]
    Chen C, Xie X, Anasori B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium‐ion batteries[J]. Angewandte Chemie International Edition,2018,57(7):1846-1850. doi: 10.1002/anie.201710616
    [30]
    Zhou L, Yan S, Pan L, et al. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries[J]. Nano Research,2016,9(3):857-865. doi: 10.1007/s12274-015-0966-9
    [31]
    Jang J-t, Jeong S, Seo J-w, et al. Ultrathin zirconium disulfide nanodiscs[J]. Journal of the American Chemical Society,2011,133(20):7636-7639. doi: 10.1021/ja200400n
    [32]
    Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials,1998,10(10):725-763. doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
    [33]
    Ogata K, Salager E, Kerr C J, et al. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy[J]. Nature communications,2014,5(1):3217. doi: 10.1038/ncomms4217
    [34]
    Doose S, Mayer J K, Michalowski P, et al. Challenges in ecofriendly battery recycling and closed material cycles: A perspective on future lithium battery generations[J]. Metals,2021,11(2):291. doi: 10.3390/met11020291
    [35]
    Helbig C, Bradshaw A M, Wietschel L, et al. Supply risks associated with lithium-ion battery materials[J]. Journal of Cleaner Production,2018,172:274-286. doi: 10.1016/j.jclepro.2017.10.122
    [36]
    Xie L, Tang C, Bi Z, et al. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective[J]. Advanced Energy Materials,2021,11(38):2101650. doi: 10.1002/aenm.202101650
    [37]
    Li Y, Li C, Qi H, et al. Mesoporous activated carbon from corn stalk core for lithium ion batteries[J]. Chemical Physics,2018,506:10-16. doi: 10.1016/j.chemphys.2018.03.027
    [38]
    Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes used in lithium batteries[J]. Chemistry of materials,2009,21(13):2604-2606. doi: 10.1021/cm900764n
    [39]
    Zhang Q, d’Astorg S, Xiao P, et al. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries[J]. Journal of Power Sources,2010,195(9):2914-2917. doi: 10.1016/j.jpowsour.2009.10.096
    [40]
    Luo Y, Wang K, Li Q, et al. Macroscopic carbon nanotube structures for lithium batteries[J]. Small,2020,16(15):1902719. doi: 10.1002/smll.201902719
    [41]
    Shaker M, Yaghmaee M S, Shahalizade T, et al. Prediction of the lithium storage capacity of hollow carbon nano-spheres based on their size and morphology[J]. Journal of Materials Science: Materials in Electronics, 2022.
    [42]
    Yu H-Y, Liang H-J, Gu Z-Y, et al. Waste-to-wealth: Low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries[J]. Electrochimica Acta,2020,361:137041. doi: 10.1016/j.electacta.2020.137041
    [43]
    Yang J, Zhou X-y, Li J, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics,2012,135(2):445-450.
    [44]
    Sun H, Del Rio Castillo A E, Monaco S, et al. Binder-free graphene as an advanced anode for lithium batteries[J]. Journal of Materials Chemistry A,2016,4(18):6886-6895. doi: 10.1039/C5TA08553E
    [45]
    Ren W, Li D, Liu H, et al. Lithium storage performance of carbon nanotubes with different nitrogen contents as anodes in lithium ions batteries[J]. Electrochimica Acta,2013,105:75-82. doi: 10.1016/j.electacta.2013.04.145
    [46]
    Yuan Y, Chen Z, Yu H, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials,2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027
    [47]
    Wang J, Han W Q. A review of heteroatom doped materials for advanced lithium–sulfur batteries[J]. Advanced Functional Materials,2022,32(2):2107166. doi: 10.1002/adfm.202107166
    [48]
    Zhang H, Guang H, Li R, et al. Doping engineering: Modulating the intrinsic activity of bifunctional carbon-based oxygen electrocatalysts for high-performance zinc-air batteries[J]. Journal of Materials Chemistry A, 2022.
    [49]
    Jin-ming X, Rong Z, Yu-xuan D, et al. Advances of sulfur-doped carbon materials as anode for sodium-ion batteries, New Carbon Materials, 2023, 38(1): 1-13.
    [50]
    Lei H, Li J, Zhang X, et al. A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries[J]. InfoMat,2022,4(2):e12272.
    [51]
    Yu S, Guo B, Zeng T, et al. Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective[J]. Composites Part B: Engineering, 2022, 110232.
    [52]
    Feng X, Bai Y, Liu M, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy & Environmental Science,2021,14(4):2036-2089.
    [53]
    Ren X, Liu Z, Zhang M, et al. Review of cathode in advanced Li-S batteries: The Effect of Doping Atoms at Micro Levels[J]. ChemElectroChem,2021,8(18):3457-3471. doi: 10.1002/celc.202100462
    [54]
    Jiang Q, Ren Y, Yang Y, et al. Recent advances in carbon-based electrocatalysts for vanadium redox flow battery: Mechanisms, properties, and perspectives[J]. Composites Part B: Engineering, 2022, 110094.
    [55]
    Usiskin R, Lu Y, Popovic J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials,2021,6(11):1020-1035. doi: 10.1038/s41578-021-00324-w
    [56]
    Gürsu H, Güner Y, Dermenci K B, et al. A novel green and one-step electrochemical method for production of sulfur-doped graphene powders and their performance as an anode in Li-ion battery[J]. Ionics,2020,26(10):4909-4919. doi: 10.1007/s11581-020-03671-w
    [57]
    Li X, Geng D, Zhang Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[J]. Electrochemistry Communications,2011,13(8):822-825. doi: 10.1016/j.elecom.2011.05.012
    [58]
    Zhang M, Yu J, Ying T, et al. P doped onion-like carbon layers coated FeP nanoparticles for anode materials in lithium ion batteries[J]. Journal of Alloys and Compounds,2019,777:860-865. doi: 10.1016/j.jallcom.2018.11.060
    [59]
    Sahoo M, Sreena K, Vinayan B, et al. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Materials Research Bulletin,2015,61:383-390. doi: 10.1016/j.materresbull.2014.10.049
    [60]
    Chen J, Wu C, Tang C, et al. Iodine-doped graphene with opportune interlayer spacing as superior anode materials for high-performance lithium-Ion batteries[J]. ChemistrySelect,2017,2(20):5518-5523. doi: 10.1002/slct.201701140
    [61]
    Li Y, Xia T, Yu T, et al. Nitrogen/chlorine-doped carbon nanodisk-encapsulated hematite nanoparticles for high-performance lithium-ion storage[J]. Journal of Alloys and Compounds,2020,843:156045. doi: 10.1016/j.jallcom.2020.156045
    [62]
    Geng Z, Li B, Liu H, et al. Oxygen-doped carbon host with enhanced bonding and electron attraction abilities for efficient and stable SnO2/carbon composite battery anode[J]. Science China Materials,2018,61(8):1067-1077. doi: 10.1007/s40843-017-9218-6
    [63]
    Guo L, He H, Ren Y, et al. Core-shell SiO@ F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries[J]. Chemical Engineering Journal,2018,335:32-40. doi: 10.1016/j.cej.2017.10.145
    [64]
    Xiong J, Pan Q, Zheng F, et al. N/S Co-doped carbon derived from cotton as high performance anode materials for lithium ion batteries[J]. Frontiers in Chemistry, 2018, 6.
    [65]
    Wu J, Pan Z, Zhang Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A,2018,6(27):12932-12944. doi: 10.1039/C8TA03968B
    [66]
    Jeon I-Y, Noh H-J, Baek J-B. Nitrogen-doped carbon nanomaterials: Synthesis, characteristics and applications[J]. Chemistry-An Asian Journal,2020,15(15):2282-2293. doi: 10.1002/asia.201901318
    [67]
    Wei D, Liu Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano letters,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    [68]
    Bulusheva L G, Fedorovskaya E O, Kurenya A G, et al. Supercapacitor performance of nitrogen-doped carbon nanotube arrays[J]. physica status solidi (b),2013,250(12):2586-2591. doi: 10.1002/pssb.201300108
    [69]
    Shaker M, Riahifar R, Li Y. A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors’ performance: Synthesis and application[J]. FlatChem,2020,22:100171. doi: 10.1016/j.flatc.2020.100171
    [70]
    Kundu M K, Bhowmik T, Mishra R, et al. Platinum nanostructure/nitrogen-doped carbon hybrid: Enhancing its base media HER/HOR activity through Bi-functionality of the catalyst[J]. ChemSusChem,2018,11(14):2388-2401. doi: 10.1002/cssc.201800856
    [71]
    Andrade A M, Liu Z, Grewal S, et al. MOF-derived Co/Cu-embedded N-doped carbon for trifunctional ORR/OER/HER catalysis in alkaline media[J]. Dalton Transactions,2021,50(16):5473-5482. doi: 10.1039/D0DT04000B
    [72]
    Antolini E. Nitrogen-doped carbons by sustainable N-and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells[J]. Renewable and Sustainable Energy Reviews,2016,58:34-51. doi: 10.1016/j.rser.2015.12.330
    [73]
    Zhang H, Liu X, Wang R, et al. Coating of α-MoO3 on nitrogen-doped carbon nanotubes by electrodeposition as a high-performance cathode material for lithium-ion batteries[J]. Journal of Power Sources,2015,274:1063-1069. doi: 10.1016/j.jpowsour.2014.10.136
    [74]
    Li Y, Wang J, Li X, et al. Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries[J]. Electrochemistry Communications,2011,13(7):668-672. doi: 10.1016/j.elecom.2011.04.004
    [75]
    Song J, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen‐doped carbon composites for high‐performance lithium–sulfur battery cathodes[J]. Angewandte Chemie,2015,127(14):4399-4403. doi: 10.1002/ange.201411109
    [76]
    Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science,2013,6(10):2839-2855.
    [77]
    Qian C, Guo P, Zhang X, et al. Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries[J]. Rsc Advances,2016,6(96):93519-93524. doi: 10.1039/C6RA21011B
    [78]
    Sun Y, Huang F, Li S, et al. Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries[J]. Nano Research,2017,10(10):3457-3467. doi: 10.1007/s12274-017-1557-8
    [79]
    Gomez-Martin A, Martinez-Fernandez J, Ruttert M, et al. An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries[J]. Carbon,2020,164:261-271. doi: 10.1016/j.carbon.2020.04.003
    [80]
    Cai D, Wang S, Lian P, et al. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries[J]. Electrochimica Acta,2013,90:492-497. doi: 10.1016/j.electacta.2012.11.105
    [81]
    Li X, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application[J]. Journal of Power Sources,2012,197:238-245. doi: 10.1016/j.jpowsour.2011.09.024
    [82]
    Yan L, Yu J, Houston J, et al. Biomass derived porous nitrogen doped carbon for electrochemical devices[J]. Green Energy & Environment,2017,2(2):84-99.
    [83]
    Inagaki M, Toyoda M, Soneda Y, et al. Nitrogen-doped carbon materials[J]. Carbon,2018,132:104-140. doi: 10.1016/j.carbon.2018.02.024
    [84]
    Zhao L, Ding B, Qin X Y, et al. Revisiting the roles of natural graphite in ongoing lithium-ion batteries[J]. Advanced Materials,2022,34(18):2106704. doi: 10.1002/adma.202106704
    [85]
    Novák P, Joho F, Lanz M, et al. The complex electrochemistry of graphite electrodes in lithium-ion batteries[J]. Journal of Power Sources,2001,97-98:39-46. doi: 10.1016/S0378-7753(01)00586-9
    [86]
    Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures[J]. Advanced Materials,2009,21(25-26):2664-2680. doi: 10.1002/adma.200901079
    [87]
    Sankar S, Saravanan S, Ahmed A T A, et al. Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery[J]. Materials Letters,2019,240:189-192. doi: 10.1016/j.matlet.2018.12.143
    [88]
    Li Y, Du Y-F, Sun G-H, et al. Self-standing hard carbon anode derived from hyper-linked nanocellulose with high cycling stability for lithium-ion batteries[J]. EcoMat,2021,3(2):e12091.
    [89]
    Buiel E, Dahn J R. Li-insertion in hard carbon anode materials for Li-ion batteries[J]. Electrochimica Acta,1999,45(1):121-130.
    [90]
    Shaker M, Sadeghi Ghazvini A A, Riahifar R, et al. On the relationship between the porosity and initial coulombic efficiency of porous carbon materials for the anode in lithium-ion batteries[J]. Electronic Materials Letters,2022,18(4):400-406. doi: 10.1007/s13391-022-00354-8
    [91]
    Chen T, Pan L, Loh T, et al. Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries[J]. Dalton Transactions,2014,43(40):14931-14935. doi: 10.1039/C4DT01223B
    [92]
    Niu F, Yang J, Wang N, et al. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries[J]. Advanced Functional Materials,2017,27(23):1700522. doi: 10.1002/adfm.201700522
    [93]
    Huang S, Li Z, Wang B, et al. N‐Doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Advanced Functional Materials,2018,28(10):1706294. doi: 10.1002/adfm.201706294
    [94]
    Saroja A P V K, Garapati M S, Shyiamala Devi R, et al. Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage[J]. Applied Surface Science,2020,504:144430. doi: 10.1016/j.apsusc.2019.144430
    [95]
    Hong W, Ge P, Jiang Y, et al. Yolk-shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity[J]. ACS Applied Materials & Interfaces,2019,11(11):10829-10840.
    [96]
    He H, Xu X, Liu D, et al. The impacts of nitrogen doping on the electrochemical hydrogen storage in a carbon[J]. International Journal of Energy Research,2021,45(6):9326-9339. doi: 10.1002/er.6463
    [97]
    Zhu R, Wang Z, Hu X, et al. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high Performance, and flexible anode for lithium-ion batteries[J]. Advanced Functional Materials,2021,31(33):2101487. doi: 10.1002/adfm.202101487
    [98]
    Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study[J]. Journal of Materials Chemistry,2012,22(18):8911-8915. doi: 10.1039/c2jm00166g
    [99]
    Bie C, Yu H, Cheng B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Advanced Materials,2021,33(9):2003521. doi: 10.1002/adma.202003521
    [100]
    Chan L, Hong K, Xiao D, et al. Resolution of the binding configuration in nitrogen-doped carbon nanotubes[J]. Physical Review B,2004,70(12):125408. doi: 10.1103/PhysRevB.70.125408
    [101]
    Shen W, Wang C, Xu Q, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate na-storage in electrode materials[J]. Advanced Energy Materials,2015,5(1):1400982. doi: 10.1002/aenm.201400982
    [102]
    Schiros T, Nordlund D, Pálová L, et al. Connecting dopant bond type with electronic structure in N-doped graphene[J]. Nano letters,2012,12(8):4025-4031. doi: 10.1021/nl301409h
    [103]
    Lherbier A, Blase X, Niquet Y M, et al. Charge transport in chemically doped 2D graphene[J]. Physical review letters,2008,101(3):036808. doi: 10.1103/PhysRevLett.101.036808
    [104]
    Cui L, Chen X, Liu B, et al. Highly Conductive nitrogen-doped graphene grown on glass toward electrochromic applications[J]. ACS Applied Materials & Interfaces,2018,10(38):32622-32630.
    [105]
    Ge J, Fan L, Wang J, et al. MoSe2/N-doped carbon as anodes for potassium-ion batteries[J]. Advanced Energy Materials,2018,8(29):1801477. doi: 10.1002/aenm.201801477
    [106]
    Wang X, Weng Q, Liu X, et al. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage[J]. Nano letters,2014,14(3):1164-1171. doi: 10.1021/nl4038592
    [107]
    Kaur M, Kaur M, Sharma V K. Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment[J]. Advances in colloid and interface science,2018,259:44-64. doi: 10.1016/j.cis.2018.07.001
    [108]
    Usachov D Y, Fedorov A, Vilkov O Y, et al. Synthesis and electronic structure of nitrogen-doped graphene[J]. Physics of the Solid State,2013,55(6):1325-1332. doi: 10.1134/S1063783413060310
    [109]
    Andrei E Y, Li G, Du X. Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport[J]. Reports on Progress in Physics,2012,75(5):056501. doi: 10.1088/0034-4885/75/5/056501
    [110]
    Brox J, Adhikari R, Shaker M, et al. On the adsorption of different tetranaphthylporphyrins on Cu(111) and Ag(111)[J]. Surface Science,2022,720:122047. doi: 10.1016/j.susc.2022.122047
    [111]
    Marchini S, Günther S, Wintterlin J. Scanning tunneling microscopy of graphene on Ru(0001)[J]. Physical Review B,2007,76(7):075429. doi: 10.1103/PhysRevB.76.075429
    [112]
    Ćavar E, Westerström R, Mikkelsen A, et al. A single h-BN layer on Pt(111)[J]. Surface Science,2008,602(9):1722-1726. doi: 10.1016/j.susc.2008.03.008
    [113]
    Fiori S, Perilli D, Panighel M, et al. “Inside out” growth method for high-quality nitrogen-doped graphene[J]. Carbon,2021,171:704-710. doi: 10.1016/j.carbon.2020.09.056
    [114]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [115]
    Novoselov K S, Colombo L, Gellert P, et al. A roadmap for graphene[J]. nature,2012,490(7419):192-200. doi: 10.1038/nature11458
    [116]
    Asl V Z, Chini S F, Zhao J, et al. Corrosion properties and surface free energy of the Zn-Al LDH/rGO coating on MAO pretreated AZ31 magnesium alloy[J]. Surface and Coatings Technology, 2021, 127764.
    [117]
    Shaker M, Salahinejad E, Cao W, et al. The effect of graphene orientation on permeability and corrosion initiation under composite coatings[J]. Construction and Building Materials,2022,319:126080. doi: 10.1016/j.conbuildmat.2021.126080
    [118]
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [119]
    Fang X-Y, Yu X-X, Zheng H-M, et al. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets[J]. Physics Letters A,2015,379(37):2245-2251. doi: 10.1016/j.physleta.2015.06.063
    [120]
    Cao W, Shaker M, Meng X, et al. Large-scale fabrication of graphene/polyamide-6 composite as a high thermal conductivity engineering composite for thermal radiators[J]. Materials Letters,2022,316:132036. doi: 10.1016/j.matlet.2022.132036
    [121]
    Huang H, Shi H, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials[J]. Advanced Functional Materials,2020,30(41):1909035. doi: 10.1002/adfm.201909035
    [122]
    Leng X, Chen S, Yang K, et al. Introduction to two-dimensional materials[J]. Surface Review and Letters,2021(28):2140005.
    [123]
    Leng X, Chen S, Yang K, et al. Technology and applications of graphene oxide membranes[J]. Surface Review and Letters,2021(28):2140004.
    [124]
    Luo B, Zhi L. Design and construction of three dimensional graphene-based composites for lithium ion battery applications[J]. Energy & Environmental Science,2015,8(2):456-477.
    [125]
    Lian P, Zhu X, Liang S, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55(12):3909-3914. doi: 10.1016/j.electacta.2010.02.025
    [126]
    Shaker M, Sadeghi Ghazvini A A, Feng S, et al. Improving the electrochemical performance of pouch cell electric double-layer capacitors by integrating graphene nanoplates into activated carbon[J]. Energy Technology,2022,10(2):2100735. doi: 10.1002/ente.202100735
    [127]
    Sadeghi Ghazvini A A, Taheri-Nassaj E, Raissi B, et al. Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode[J]. Materials Letters,2021,285:129195. doi: 10.1016/j.matlet.2020.129195
    [128]
    Pan D, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets[J]. Chemistry of materials,2009,21(14):3136-3142. doi: 10.1021/cm900395k
    [129]
    Kim H, Park K Y, Hong J, et al. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries[J]. Scientific reports,2014,4(1):5278. doi: 10.1038/srep05278
    [130]
    Xie G, Zhang K, Guo B, et al. Graphene-based materials for hydrogen generation from light-driven water splitting[J]. Advanced Materials,2013,25(28):3820-3839. doi: 10.1002/adma.201301207
    [131]
    Guo B, Liu Q, Chen E, et al. Controllable N-doping of graphene[J]. Nano letters,2010,10(12):4975-4980. doi: 10.1021/nl103079j
    [132]
    Liu H, Deng Y, Mao J, et al. Characteristics and electrochemical performances of nitrogen-doped graphene prepared using different carbon and nitrogen sources as anode for lithium ion batteries[J]. International Journal of Electrochemical Science, 2021, 16(4).
    [133]
    Fu C, Song C, Liu L, et al. Synthesis and properties of nitrogen-doped graphene as anode materials for lithium-ion batteries[J]. International Journal of Electrochemical Science,2016,11:3876-3886.
    [134]
    Sui Z Y, Wang C, Yang Q S, et al. A highly nitrogen-doped porous graphene–an anode material for lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3(35):18229-18237. doi: 10.1039/C5TA05759K
    [135]
    Wang R, Zhao Q, Zheng W, et al. Achieving high energy density in a 4. 5 V all nitrogen-doped graphene based lithium-ion capacitor[J]. Journal of Materials Chemistry A,2019,7(34):19909-19921. doi: 10.1039/C9TA06316A
    [136]
    Tian L L, Wei X Y, Zhuang Q C, et al. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage[J]. Nanoscale,2014,6(11):6075-6083. doi: 10.1039/C4NR00454J
    [137]
    Tian L L, Li S B, Zhang M J, et al. Cascading boost effect on the capacity of nitrogen-doped graphene sheets for Li-and Na-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(40):26722-26729.
    [138]
    Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS nano,2011,5(7):5463-5471. doi: 10.1021/nn2006249
    [139]
    Yang Y, Shi W, Zhang R, et al. Electrochemical exfoliation of graphite into nitrogen-doped graphene in glycine solution and its energy storage properties[J]. Electrochimica Acta,2016,204:100-107. doi: 10.1016/j.electacta.2016.04.063
    [140]
    Jiang Z-J, Jiang Z. Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces,2014,6(21):19082-19091.
    [141]
    Wen H, Guo B, Kang W, et al. Free-standing nitrogen-doped graphene paper for lithium storage application[J]. Rsc Advances,2018,8(25):14032-14039. doi: 10.1039/C8RA01019F
    [142]
    Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nature communications,2014,5(1):1-10.
    [143]
    Fu C J, Li S, Wang Q. High reversible capacity of Nitrogen-doped graphene as an anode material for lithium-ion batteries[J]. Advanced Materials Research, Trans Tech Publ, 2015, pp. 459-464.
    [144]
    Aphirakaramwong C, Phattharasupakun N, Suktha P, et al. Lightweight multi-walled carbon nanotube/N-doped graphene aerogel composite for high-performance lithium-ion capacitors[J]. Journal of The Electrochemical Society,2019,166(4):A532. doi: 10.1149/2.0251904jes
    [145]
    Wan H, Hu X. New strategy to prepare nitrogen self-doped graphene nanosheets by magnesiothermic reduction and its application in lithium ion batteries[J]. International Journal of Hydrogen Energy,2019,44(45):24369-24376. doi: 10.1016/j.ijhydene.2019.07.207
    [146]
    Liu X, Wu Y, Yang Z, et al. Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries[J]. Journal of Power Sources,2015,293:799-805. doi: 10.1016/j.jpowsour.2015.05.074
    [147]
    Meng J, Suo Y, Li J, et al. Nitrogen-doped graphene aerogels as anode materials for lithium-ion battery: Assembly and electrochemical properties[J]. Materials Letters,2015,160:392-396. doi: 10.1016/j.matlet.2015.08.024
    [148]
    Liu C, Liu X, Tan J, et al. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode[J]. Journal of Power Sources,2017,342:157-164. doi: 10.1016/j.jpowsour.2016.11.110
    [149]
    Jiang Z, Jiang Z-J, Tian X, et al. Nitrogen-doped graphene hollow microspheres as an efficient electrode material for lithium ion batteries[J]. Electrochimica Acta,2014,146:455-463. doi: 10.1016/j.electacta.2014.09.069
    [150]
    Wang H, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties[J]. Journal of Materials Chemistry,2011,21(14):5430-5434. doi: 10.1039/c1jm00049g
    [151]
    Jiang M-H, Cai D, Tan N. Nitrogen-doped graphene sheets prepared from different graphene-based precursors as high capacity anode materials for lithium-ion batteries[J]. Int. J. Electrochem. Sci,2017,12:7154-7165.
    [152]
    Liu S, Wei W, Wang Y, et al. Novel sponge-like N-doped graphene film as high-efficiency electrode for Li-ion battery[J]. Applied Surface Science,2019,485:529-535. doi: 10.1016/j.apsusc.2019.04.209
    [153]
    Xing Z, Ju Z, Zhao Y, et al. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries[J]. Scientific reports,2016,6(1):1-10. doi: 10.1038/s41598-016-0001-8
    [154]
    He C, Wang R, Fu H, et al. Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2013,1(46):14586-14591. doi: 10.1039/c3ta13388e
    [155]
    Hu T, Sun X, Sun H, et al. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability[J]. Physical Chemistry Chemical Physics,2014,16(3):1060-1066. doi: 10.1039/C3CP54494J
    [156]
    Bagley J D, Kumar D K, See K A, et al. Selective formation of pyridinic-type nitrogen-doped graphene and its application in lithium-ion battery anodes[J]. Rsc Advances,2020,10(65):39562-39571. doi: 10.1039/D0RA06199A
    [157]
    Park H-Y, Singh K P, Yang D-S, et al. Simple approach to advanced binder-free nitrogen-doped graphene electrode for lithium batteries[J]. Rsc Advances,2015,5(5):3881-3887. doi: 10.1039/C4RA15541F
    [158]
    Quan B, Yu S-H, Chung D Y, et al. Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications[J]. Scientific reports,2014,4(1):1-6.
    [159]
    Du M, Sun J, Chang J, et al. Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode[J]. Rsc Advances,2014,4(80):42412-42417. doi: 10.1039/C4RA05544F
    [160]
    Yen P J, Ilango P R, Chiang Y C, et al. Tunable nitrogen-doped graphene sheets produced with in situ electrochemical cathodic plasma at room temperature for lithium-ion batteries[J]. Materials Today Energy,2019,12:336-347. doi: 10.1016/j.mtener.2019.01.003
    [161]
    Tian L, Zhuang Q, Li J, et al. Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets[J]. Chinese Science Bulletin,2011,56(30):3204-3212. doi: 10.1007/s11434-011-4609-6
    [162]
    Li Z, Xu Z, Tan X, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy & Environmental Science,2013,6(3):871-878.
    [163]
    Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS nano,2015,9(3):2556-2564. doi: 10.1021/nn506394r
    [164]
    Zhang C, Mahmood N, Yin H, et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials,2013,25(35):4932-4937. doi: 10.1002/adma.201301870
    [165]
    Tasdemir A, Bulut Kopuklu B, Kirlioglu A C, et al. The influence of nitrogen doping on reduced graphene oxide as highly cyclable Li-ion battery anode with enhanced performance[J]. International Journal of Hydrogen Energy,2021,46(21):11865-11877. doi: 10.1016/j.ijhydene.2021.01.099
    [166]
    Sheng Z H, Shao L, Chen J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS nano,2011,5(6):4350-4358. doi: 10.1021/nn103584t
    [167]
    Li Z, Lu C, Xia Z, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon,2007,45(8):1686-1695. doi: 10.1016/j.carbon.2007.03.038
    [168]
    Wang X, Fulvio P F, Baker G A, et al. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids[J]. Chemical Communications,2010,46(25):4487-4489. doi: 10.1039/c0cc00799d
    [169]
    Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature nanotechnology,2008,3(4):210-215. doi: 10.1038/nnano.2008.67
    [170]
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:3.
    [171]
    Savas Berber, Young-Kyun Kwon, Tománek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters,2000,84:4613-4616. doi: 10.1103/PhysRevLett.84.4613
    [172]
    Kumanek B, Janas D. Thermal conductivity of carbon nanotube networks: a review[J]. Journal of Materials Science,2019,54:7397-7427. doi: 10.1007/s10853-019-03368-0
    [173]
    Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters,2006,6:96-100. doi: 10.1021/nl052145f
    [174]
    Ebbesen T W, Lezect H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature,1996,382:54-56. doi: 10.1038/382054a0
    [175]
    Durkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Letters,2004,4:35-39. doi: 10.1021/nl034841q
    [176]
    Chae S H, Lee Y H. Carbon nanotubes and graphene towards soft electronics[J]. Nano Convergence,2014,1(15):1-26.
    [177]
    Casas C d l, Li W. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources,2012,208:74-85. doi: 10.1016/j.jpowsour.2012.02.013
    [178]
    Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries[J]. Energy & Environmental Science,2009,2:638-654.
    [179]
    Sehrawat P, Julien C, Islam S S. Carbon nanotubes in Li-ion batteries: A review[J]. Materials Science and Engineering B,2016,213:12-40. doi: 10.1016/j.mseb.2016.06.013
    [180]
    Pan Z, Ren J, Guan G, et al. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries[J]. Advanced Energy Materials,2016,6(11):1600271. doi: 10.1002/aenm.201600271
    [181]
    Faisal S N, Subramaniyam C M, Haque E, et al. Nanoarchitectured nitrogen-doped graphene/carbon nanotube as high performance electrodes for solid state supercapacitors, capacitive deionization, Li-ion battery, and metal-free bifunctional electrocatalysis[J]. ACS Applied Energy Materials,2018,1(10):5211-5223.
    [182]
    Li J, Zhang F, Wang C, et al. Self nitrogen-doped carbon nanotubes as anode materials for high capacity and cycling stability lithium-ion batteries[J]. Materials & Design,2017,133:169-175.
    [183]
    Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials,2012,24(15):2047-2050. doi: 10.1002/adma.201104634
    [184]
    Shan C, Wang Y, Xie S, et al. Free-standing nitrogen-doped graphene‐carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithium‐ion batteries[J]. Journal of Chemical Technology & Biotechnology,2019,94(12):3793-3799.
    [185]
    Yue H, Li F, Yang Z, et al. Nitrogen-doped carbon nanofibers as anode material for high-capacity and binder-free lithium ion battery[J]. Materials Letters,2014,120:39-42. doi: 10.1016/j.matlet.2014.01.049
    [186]
    Shaker M, Ghazvini A A S, Cao W, et al. Biomass-derived porous carbons as supercapacitor electrodes – A review[J]. New Carbon Materials,2021,36(3):546-572. doi: 10.1016/S1872-5805(21)60038-0
    [187]
    Sinha P, Banerjee S, Kar K K. Characteristics of activated carbon, Handbook of Nanocomposite Supercapacitor Materials I, 2020, 125-154.
    [188]
    Kumar R, Sharma A. Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery[J]. Journal of Applied Electrochemistry,2018,48(1):1-13. doi: 10.1007/s10800-017-1129-3
    [189]
    Zhao J, Lai H, Lyu Z, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials,2015,27(23):3541-3545. doi: 10.1002/adma.201500945
    [190]
    Wang S, Xia L, Yu L, et al. Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium‐ion batteries with ultralong cycle life and superior rate capability[J]. Advanced Energy Materials,2016,6(7):1502217. doi: 10.1002/aenm.201502217
    [191]
    Xiao Y, Wang X, Wang W, et al. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode[J]. ACS Applied Materials & Interfaces,2014,6(3):2051-2058.
    [192]
    Gao F, Zang Y-h, Wang Y, et al. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste[J]. New Carbon Materials,2021,36(1):34-48. doi: 10.1016/S1872-5805(21)60003-3
    [193]
    Yan M, Qin Y, Wang L, et al. Recent advances in biomass-derived carbon materials for sodium-ion energy storage devices[J]. Nanomaterials,2022,12(6):930. doi: 10.3390/nano12060930
    [194]
    Zheng F, Liu D, Xia G, et al. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds,2017,693:1197-1204. doi: 10.1016/j.jallcom.2016.10.118
    [195]
    Zhou X-L, Zhang H, Shao L-M, et al. Preparation and application of hierarchical porous carbon materials from waste and biomass: A review[J]. Waste and Biomass Valorization,2020,12(4):1699-1724.
    [196]
    Sun D, Ban R, Zhang P-H, et al. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon,2013,64:424-434. doi: 10.1016/j.carbon.2013.07.095
    [197]
    Chen P, Wang L-K, Wang G, et al. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction[J]. Energy Environ. Sci.,2014,7(12):4095-4103. doi: 10.1039/C4EE02531H
    [198]
    Saravanan K R, Kalaiselvi N. Nitrogen containing bio-carbon as a potential anode for lithium batteries[J]. Carbon,2015,81:43-53. doi: 10.1016/j.carbon.2014.09.021
    [199]
    Chen L, Zhang Y, Lin C, et al. Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries[J]. J. Mater. Chem. A,2014,2(25):9684-9690. doi: 10.1039/C4TA00501E
    [200]
    Arrebola J C, Caballero A, Hernán L, et al. Improving the performance of biomass-derived carbons in li-ion batteries by controlling the lithium insertion process[J]. Journal of The Electrochemical Society, 2010, 157(7).
    [201]
    Wu  X-L, Chen  L-L, Xin S, et al. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid[J]. ChemSusChem,2010,3(6):703-707. doi: 10.1002/cssc.201000035
    [202]
    Caballero A, Hernán L, Morales J. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries[J]. ChemSusChem,2011,4(5):658-663. doi: 10.1002/cssc.201000398
    [203]
    Liu T, Luo R, Qiao W, et al. Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries[J]. Electrochimica Acta,2010,55(5):1696-1700. doi: 10.1016/j.electacta.2009.10.051
    [204]
    Ou J, Zhang Y, Chen L, et al. Heteroatom doped porous carbon derived from hair as an anode with high performance for lithium ion batteries[J]. RSC Adv.,2014,4(109):63784-63791. doi: 10.1039/C4RA12121J
    [205]
    Reza M S, Yun C S, Afroze S, et al. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review[J]. Arab Journal of Basic and Applied Sciences,2020,27(1):208-238. doi: 10.1080/25765299.2020.1766799
    [206]
    Gao Y-P, Zhai Z-B, Huang K-J, et al. Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors[J]. New Journal of Chemistry,2017,41(20):11456-11470. doi: 10.1039/C7NJ02580G
    [207]
    Mbarki F, Selmi T, Kesraoui A, et al. Hydrothermal pre-treatment, an efficient tool to improve activated carbon performances[J]. Industrial crops and products,2019,140:111717. doi: 10.1016/j.indcrop.2019.111717
    [208]
    Jain A, Balasubramanian R, Srinivasan M. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review[J]. Chemical Engineering Journal,2016,283:789-805. doi: 10.1016/j.cej.2015.08.014
    [209]
    Lu H, Zhao X S. Biomass-derived carbon electrode materials for supercapacitors[J]. Sustainable Energy & Fuels,2017,1(6):1265-1281.
    [210]
    Gaddam R R, Kantheti S, Narayan R, et al. Graphitic nanoparticles from thermal dissociation of camphor as an effective filler in polymeric coatings[J]. RSC Adv.,2014,4(44):23043-23049. doi: 10.1039/C4RA03685A
    [211]
    Gaddam R R, Vasudevan D, Narayan R, et al. Controllable synthesis of biosourced blue-green fluorescent carbon dots from camphor for the detection of heavy metal ions in water[J]. RSC Adv.,2014,4(100):57137-57143. doi: 10.1039/C4RA10471D
    [212]
    Gutru R, Turtayeva Z, Xu F, et al. Recent progress in heteroatom doped carbon based electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells[J]. International Journal of Hydrogen Energy,2022,48 (9)-3593-3631. doi: https://doi.org/10.1016/j.ijhydene.2022.10.177
    [213]
    Deng Y, Xie Y, Zou K, et al. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A,2016,4(4):1144-1173. doi: 10.1039/C5TA08620E
    [214]
    Graglia M, Pampel J, Hantke T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano,2016,10(4):4364-4371. doi: 10.1021/acsnano.5b08040
    [215]
    Ma Z, Zhang H, Yang Z, et al. Mesoporous nitrogen-doped carbons with high nitrogen contents and ultrahigh surface areas: synthesis and applications in catalysis[J]. Green Chemistry,2016,18(7):1976-1982. doi: 10.1039/C5GC01920F
    [216]
    Zhu J, Tang Y, Yang C, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 mxene nanosheets with enhanced electrochemical performance[J]. Journal of The Electrochemical Society,2016,163(5):A785-A791. doi: 10.1149/2.0981605jes
    [217]
    Deng J, Li M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion[J]. Green Chemistry,2016,18(18):4824-4854. doi: 10.1039/C6GC01172A
    [218]
    Gao F, Geng C, Xiao N, et al. Hierarchical porous carbon sheets derived from biomass containing an activation agent and in-built template for lithium ion batteries[J]. Carbon,2018,139:1085-1092. doi: 10.1016/j.carbon.2018.08.010
    [219]
    Nie Z, Huang Y, Ma B, et al. Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-ion storage[J]. Scientific Reports,2019,9(1):15032. doi: 10.1038/s41598-019-50330-w
    [220]
    Zhang B, Jiang Y, Balasubramanian R. Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: a critical review[J]. Journal of Materials Chemistry A, 2021.
    [221]
    Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science,2021,14(3):1326-1379.
    [222]
    Yu W, Wang H, Liu S, et al. N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes[J]. Journal of Materials Chemistry A,2016,4(16):5973-5983. doi: 10.1039/C6TA01821A
    [223]
    Huang J, Lin Y, Ji M, et al. Nitrogen-doped porous carbon derived from foam polystyrene as an anode material for lithium-ion batteries[J]. Applied Surface Science,2020,504:144398. doi: 10.1016/j.apsusc.2019.144398
    [224]
    Sun H-g, Xiao H-h, Song W, et al. A novel N-doped organic porous carbon derive from water-based alkyd resin for lithium ion battery anode materials[J]. Journal of Alloys and Compounds,2019,805:984-990. doi: 10.1016/j.jallcom.2019.07.153
    [225]
    Huo K, An W, Fu J, et al. Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries[J]. Journal of Power Sources,2016,324:233-238. doi: 10.1016/j.jpowsour.2016.05.084
    [226]
    Sun D, Yan X, Yang J, et al. Hierarchically porous and nitrogen-doped graphene-like microspheres as stable anodes for lithium-ion batteries[J]. ChemElectroChem,2015,2(11):1830-1838. doi: 10.1002/celc.201500145
    [227]
    Karthikeyan C, Babu G S, Maruthamuthu S, et al. Exploration of biogenic nitrogen doped carbon microspheres derived from resorcinol-formaldehyde as anode for lithium and sodium ion batteries[J]. Journal of colloid and interface science,2019,554:9-18. doi: 10.1016/j.jcis.2019.06.084
    [228]
    Zhang X, Zhang Z, Hu F, et al. Carbon-dots-derived 3D highly nitrogen-doped porous carbon framework for high-performance lithium ion storage[J]. ACS Sustainable Chemistry & Engineering,2019,7(11):9848-9856.
    [229]
    Zhang X, Zhu G, Wang M, et al. Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries[J]. Carbon,2017,116:686-694. doi: 10.1016/j.carbon.2017.02.057
    [230]
    Jia X, Zhang G, Wang T, et al. Monolithic nitrogen-doped graphene frameworks as ultrahigh-rate anodes for lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3(30):15738-15744. doi: 10.1039/C5TA03706A
    [231]
    Wu Q, Liu J, Yuan C, et al. Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries[J]. Applied Surface Science,2017,425:1082-1088. doi: 10.1016/j.apsusc.2017.07.118
    [232]
    Dong S, Cui J, Yu D, et al. Nitrogen-doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for electrochemical Li+/Na+ storage[J]. Journal of Solid State Electrochemistry,2022,26(3):683-693. doi: 10.1007/s10008-021-05100-y
    [233]
    Zhao J, Li Z, Yao S, et al. Zn/Co-ZIF-derived bi-metal embedded N-doped porous carbon as anodes for lithium-ion batteries[J]. Journal of Materials Science:Materials in Electronics,2020,31(16):13889-13898. doi: 10.1007/s10854-020-03948-w
    [234]
    Gayathri S, Arunkumar P, Kim E J, et al. Mesoporous nitrogen-doped carbon@graphene nanosheets as ultra-stable anode for lithium-ion batteries–Melamine as surface modifier than nitrogen source[J]. Electrochimica Acta,2019,318:290-301. doi: 10.1016/j.electacta.2019.06.054
    [235]
    Zhang D, Wang G, Xu L, et al. Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries[J]. Applied Surface Science,2018,451:298-305. doi: 10.1016/j.apsusc.2018.04.251
    [236]
    Bhattacharjya D, Park H Y, Kim M S, et al. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries[J]. Langmuir,2014,30(1):318-324. doi: 10.1021/la403366e
    [237]
    Wu Z, Zou J, Shabanian S, et al. The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries[J]. Chemical Engineering Journal,2022,427:130972. doi: 10.1016/j.cej.2021.130972
    [238]
    Petrovic S. Battery technology crash course[B/OL]. Springer, 2021.
    [239]
    Peters J F, Peña Cruz A, Weil M. Exploring the economic potential of sodium-ion batteries[J]. Batteries,2019,5(1):10. doi: 10.3390/batteries5010010
    [240]
    Chen K H, Goel V, Namkoong M J, et al. Enabling 6C fast charging of Li‐ion batteries with graphite/hard carbon hybrid anodes[J]. Advanced Energy Materials,2021,11(5):2003336. doi: 10.1002/aenm.202003336
    [241]
    Saurel D, Orayech B, Xiao B, et al. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials,2018,8(17):1703268. doi: 10.1002/aenm.201703268
    [242]
    Ni J, Huang Y, Gao L. A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. Journal of Power Sources,2013,223:306-311. doi: 10.1016/j.jpowsour.2012.09.047
    [243]
    Jiang W, Wu M, Liu F, et al. Variation of carbon coatings on the electrochemical performance of LiFePO4 cathodes for lithium ionic batteries[J]. Rsc Advances,2017,7(70):44296-44302. doi: 10.1039/C7RA08062J
    [244]
    Jayaraman S, Jain A, Ulaganathan M, et al. Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon[J]. Chemical Engineering Journal,2017,316:506-513. doi: 10.1016/j.cej.2017.01.108
    [245]
    Kong L, Li Y, Feng W. Fluorine-doped hard carbon as the advanced performance anode material of sodium-ion batteries[J]. Transactions of Tianjin University,2022,28(2):123-131. doi: 10.1007/s12209-021-00311-w
    [246]
    Zhang K, Li X, Liang J, et al. Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta,2015,155:174-182. doi: 10.1016/j.electacta.2014.12.108
    [247]
    Yang Z, Guo H, Li F, et al. Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon[J]. Journal of energy chemistry,2018,27(5):1390-1396. doi: 10.1016/j.jechem.2018.01.013
    [248]
    Tang Y, Wang X, Chen J, et al. High‐level pyridinic-n-doped carbon nanosheets with promising performances severed as li-ion battery anodes[J]. Energy Technology,2020,8(9):2000361. doi: 10.1002/ente.202000361
    [249]
    Yu Y-X. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?[J]. Physical Chemistry Chemical Physics,2013,15(39):16819-16827. doi: 10.1039/c3cp51689j
    [250]
    Gu J, Du Z, Zhang C, et al. Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage[J]. Advanced Energy Materials,2016,6(18):1600917. doi: 10.1002/aenm.201600917
    [251]
    Kong X K, Chen Q W. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model[J]. Physical Chemistry Chemical Physics,2013,15(31):12982-12987. doi: 10.1039/c3cp51987b
    [252]
    Yang J, Jia K, Wang M, et al. Fabrication of nitrogen-doped porous graphene hybrid nanosheets from metal-organic frameworks for lithium-ion batteries[J]. Nanotechnology,2020,31(14):145402. doi: 10.1088/1361-6528/ab6475
    [253]
    Guo W, Li X, Xu J, et al. Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode[J]. Electrochimica Acta,2016,188:414-420. doi: 10.1016/j.electacta.2015.12.045
    [254]
    Guo S, Chen Y, Shi L, et al. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries[J]. Applied Surface Science,2018,437:136-143. doi: 10.1016/j.apsusc.2017.12.144
    [255]
    Le H T, Dang T-D, Chu N T, et al. Synthesis of nitrogen-doped ordered mesoporous carbon with enhanced lithium storage performance from natural kaolin clay[J]. Electrochimica Acta,2020,332:135399. doi: 10.1016/j.electacta.2019.135399
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(6)

    Article Metrics

    Article Views(1119) PDF Downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return