Volume 38 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
YU Qiu-xiang, LI Huan-xin, WEN Yong-liang, XU Chen-xi, QIN Shi-feng, KUANG Ya-fei, ZHOU Hai-hui, HUANG Zhong-yuan. The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries. New Carbon Mater., 2023, 38(3): 543-554. doi: 10.1016/S1872-5805(23)60726-7
Citation: YU Qiu-xiang, LI Huan-xin, WEN Yong-liang, XU Chen-xi, QIN Shi-feng, KUANG Ya-fei, ZHOU Hai-hui, HUANG Zhong-yuan. The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries. New Carbon Mater., 2023, 38(3): 543-554. doi: 10.1016/S1872-5805(23)60726-7

The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries

doi: 10.1016/S1872-5805(23)60726-7
More Information
  • A nanocomposite of zinc sulfide nanodots imbedded in honeycomb-like N-S co-doped carbon nanosheets (ZnS/NS-CN) was synthesized from waste biomass orange peel using ZnCl2 as the hard template and zinc source, and melamine and thiourea as the respective nitrogen and sulfur sources. When used as the anode material in Li-ion batteries, ZnS/NS-CN has a high reversible capacity (853.5 mAh g−1 at 0.1 A g−1 after 300 cycles), an excellent long-term cycling stability (70.1% capacity retention after 1 000 cycles at 5 A g−1) and an outstanding rate capability. Besides, a ZnS/NS-CN//LiNiCoMnO2 full cell tested at 0.5-4 V has an excellent battery performance (140.4 mAh g−1 at 0.2 C after 150 cycles with an energy density of 132.4 Wh kg−1).
  • loading
  • [1]
    Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of power sources,2010,195(9):2419-2430. doi: 10.1016/j.jpowsour.2009.11.048
    [2]
    Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [3]
    Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of materials,2010,22(3):587-603. doi: 10.1021/cm901452z
    [4]
    Liu K, Liu Y, Lin D, et al. Materials for lithium-ion battery safety[J]. Science advances,2018,4(6):eaas9820. doi: 10.1126/sciadv.aas9820
    [5]
    Chen Q, Tan X, Liu Y, et al. Biomass-derived porous graphitic carbon materials for energy and environmental applications[J]. Journal of Materials Chemistry A,2020,8(12):5773-5811. doi: 10.1039/C9TA11618D
    [6]
    Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition,2008,47(16):2930-2946. doi: 10.1002/anie.200702505
    [7]
    Liu H, Liu X, Li W, et al. Porous carbon composites for next generation rechargeable lithium batteries[J]. Advanced Energy Materials,2017,7(24):1700283. doi: 10.1002/aenm.201700283
    [8]
    Du X, Zhao H, Lu Y, et al. Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries[J]. Electrochimica Acta,2017,228:100-106. doi: 10.1016/j.electacta.2017.01.038
    [9]
    Zhang H, Zhao H, Khan M A, et al. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries[J]. Journal of Materials Chemistry A,2018,6(42):20564-20620. doi: 10.1039/C8TA05336G
    [10]
    Zhao Y, Li X, Yan B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J]. Advanced Energy Materials,2016,6(8):1502175. doi: 10.1002/aenm.201502175
    [11]
    Zheng Z, Wu H H, Liu H, et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets[J]. ACS Nano,2020,14(8):9545-9561. doi: 10.1021/acsnano.9b08575
    [12]
    Zhang Y, Jiao Y, Liao M, et al. Carbon nanomaterials for flexible lithium ion batteries[J]. Carbon,2017,124:79-88. doi: 10.1016/j.carbon.2017.07.065
    [13]
    He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. ACS Nano,2013,7(5):4459-4469. doi: 10.1021/nn401059h
    [14]
    Zhang S, Lin R, Yue W, et al. Novel synthesis of metal sulfides-loaded porous carbon as anode materials for lithium-ion batteries[J]. Chemical Engineering Journal,2017,314:19-26. doi: 10.1016/j.cej.2016.12.123
    [15]
    Ding Y, Hu L, He D, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery[J]. Chemical Engineering Journal,2020,380:122489. doi: 10.1016/j.cej.2019.122489
    [16]
    Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science,2021,14(3):1326-1379.
    [17]
    Gong H, Du T, Liu L, et al. Self-source silicon embedded in 2D biomass-based carbon sheet as anode material for sodium ion battery[J]. Applied Surface Science,2022,586:152759. doi: 10.1016/j.apsusc.2022.152759
    [18]
    Liang C, Wang P, Li Y, et al. Biomass based composite used as anode materials: Porous ZnO anchored on the rice husk-derived carbon substrate for Li-ion batteries[J]. Materials Science and Engineering:B,2022,278:115656. doi: 10.1016/j.mseb.2022.115656
    [19]
    Li H, Gong Y, Fu C, et al. A novel method to prepare a nanotubes@ mesoporous carbon composite material based on waste biomass and its electrochemical performance[J]. Journal of Materials Chemistry A,2017,5(8):3875-3887. doi: 10.1039/C6TA10786A
    [20]
    Li T, Zhi D D, Guo Z H, et al. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application[J]. Green Chemistry,2022,24(2):647-674. doi: 10.1039/D1GC02566J
    [21]
    John K I, Omorogie M O. Biomass-based hydrothermal carbons for catalysis and environmental cleanup: A review[J]. Green Chemistry Letters and Reviews,2022,15(1):162-186. doi: 10.1080/17518253.2022.2028017
    [22]
    Huang M, Mi K, Zhang J, et al. MOF-derived Bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage[J]. Journal of Materials Chemistry A,2017,5(1):266-274. doi: 10.1039/C6TA09030C
    [23]
    Teng Y, Liu H, Liu D, et al. Pitaya-like carbon-coated ZnS/carbon nanospheres with inner three-dimensional nanostructure as high-performance anode for lithium-ion battery[J]. Journal of colloid and interface science,2019,554:220-228. doi: 10.1016/j.jcis.2019.07.012
    [24]
    Dong S, Li C, Li Z, et al. Mesoporous hollow Sb/ZnS@ C Core-shell heterostructures as anodes for high-performance sodium-ion batteries[J]. Small,2018,14(16):1704517. doi: 10.1002/smll.201704517
    [25]
    Feng Q, Li H, Tan Z, et al. Design and preparation of three-dimensional MnO/N-doped carbon nanocomposites based on waste biomass for high storage and ultra-fast transfer of lithium ions[J]. Journal of Materials Chemistry A,2018,6(40):19479-19487. doi: 10.1039/C8TA07096B
    [26]
    Chang Y, Zhang G, Han B, et al. Polymer dehalogenation-enabled fast fabrication of N, S-codoped carbon materials for superior supercapacitor and deionization applications[J]. ACS Applied Materials & Interfaces,2017,9(35):29753-29759.
    [27]
    Chen M, Zhang Z, Si L, et al. Engineering of yolk-double shell cube-like SnS@ N-S codoped carbon as a high-performance anode for Li- and Na-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(38):35050-35059.
    [28]
    Jing M, Chen Z, Li Z, et al. Facile synthesis of ZnS/N, S co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(1):704-712.
    [29]
    Zhang W, Huang Z, Zhou H, et al. Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material[J]. Journal of Alloys and Compounds,2020,816:152633. doi: 10.1016/j.jallcom.2019.152633
    [30]
    Park G D, Choi S H, Lee J K, et al. One-Pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries[J]. Chemistry-A European Journal,2014,20(38):12183-12189. doi: 10.1002/chem.201403471
    [31]
    Mao M, Jiang L, Wu L, et al. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(25):13384-13389. doi: 10.1039/C5TA01501D
    [32]
    Chen Z, Wu R, Wang H, et al. Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties[J]. Chemical Engineering Journal,2017,326:680-690. doi: 10.1016/j.cej.2017.06.009
    [33]
    Park A R, Jeon K J, Park C M. Electrochemical mechanism of Li insertion/extraction in ZnS and ZnS/C anodes for Li-ion batteries[J]. Electrochimica Acta,2018,265:107-114. doi: 10.1016/j.electacta.2018.01.158
    [34]
    Grugeon S, Laruelle S, Dupont L, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li[J]. Solid state sciences,2003,5(6):895-904. doi: 10.1016/S1293-2558(03)00114-6
    [35]
    Ponrouch A, Taberna P L, Simon P, et al. On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction[J]. Electrochimica Acta,2012,61:13-18. doi: 10.1016/j.electacta.2011.11.029
    [36]
    Mao Y, Duan H, Xu B, et al. Lithium storage in nitrogen-rich mesoporous carbon materials[J]. Energy & Environmental Science,2012,5(7):7950-7955.
    [37]
    Balaya P, Bhattacharyya A J, Jamnik J, et al. Nano-ionics in the context of lithium batteries[J]. Journal of Power Sources,2006,159(1):171-178. doi: 10.1016/j.jpowsour.2006.04.115
    [38]
    Augustyn V, Come J, Lowe M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature materials,2013,12(6):518-522. doi: 10.1038/nmat3601
    [39]
    Zhang W, Zhou H, Huang Z, et al. 3D hierarchical microspheres constructed by ultrathin MoS2-C nanosheets as high-performance anode material for sodium-ion batteries[J]. Journal of Energy Chemistry,2020,49:307-315. doi: 10.1016/j.jechem.2020.03.001
    [40]
    Wang F, Zhang W, Zhou H, et al. Preparation of porous FeS2-C/RG composite for sodium ion batteries[J]. Chemical Engineering Journal,2020,380:122549. doi: 10.1016/j.cej.2019.122549
    [41]
    Wang M, Huang Y, Zhang N, et al. Fabrication of Ti3+ doped TiO2 coated Mn3O4 nanorods with voids and channels for lithium storage[J]. Chemical Engineering Journal,2019,370:1425-1433. doi: 10.1016/j.cej.2019.04.023
    [42]
    Yu D, Pang Q, Gao Y, et al. Hierarchical flower-like VS2 nanosheets-A high rate-capacity and stable anode material for sodium-ion battery[J]. Energy Storage Materials,2018,11:1-7. doi: 10.1016/j.ensm.2017.09.002
  • Supporting Information20220166.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(469) PDF Downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return