Volume 38 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
MAO Er-yang, DU Jun-mou, DUAN Xiang-rui, WANG Ling-yue, WANG Xian-cheng, LI Guo-cheng, FU Lin, SUN Yong-ming. Preparation and electrochemical performance of ultra-thin reduced graphene oxide/lithium metal composite foils. New Carbon Mater., 2023, 38(4): 754-764. doi: 10.1016/S1872-5805(23)60729-2
Citation: MAO Er-yang, DU Jun-mou, DUAN Xiang-rui, WANG Ling-yue, WANG Xian-cheng, LI Guo-cheng, FU Lin, SUN Yong-ming. Preparation and electrochemical performance of ultra-thin reduced graphene oxide/lithium metal composite foils. New Carbon Mater., 2023, 38(4): 754-764. doi: 10.1016/S1872-5805(23)60729-2

Preparation and electrochemical performance of ultra-thin reduced graphene oxide/lithium metal composite foils

doi: 10.1016/S1872-5805(23)60729-2
Funds:  Natural Science Foundation of China (52272207) and Basic Research Expenses of Central Universities (2019YCXJJ014).
More Information
  • Author Bio:

    MAO Er-yang, Ph.D. E-mail: maoeryang@foxmail.com

  • Corresponding author: SUN Yong-ming, Professor. E-mail: yongmingsun@hust.edu.cn
  • Received Date: 2022-04-15
  • Rev Recd Date: 2022-07-15
  • Available Online: 2023-03-13
  • Publish Date: 2023-08-01
  • Ultra-thin (≤50 μm) lithium metal anodes (LMAs) are highly desirable for high energy density lithium metal batteries (LMBs). However, their fabrication is complicated and costly due to the sticky and brittle nature of metallic Li, and they have a worse cycling stability than their thick counterparts. We report the fabrication of ultra-thin reduced graphene oxide/Li metal (rGO/Li) composite foils with thicknesses ranging from 10 to 50 μm. During the fabrication, disordered rGO sheets and molten metallic Li were stirred at 200 ºC to produce micrometer-size rGO/Li particles, which were rolled to form an ultra-thin uniform composite foil. The rGO sheets were randomly distributed in the composite to form a three-dimensional network, which is different from the laminated rGO structure previously reported, and supported stable Li plating/stripping behavior. As expected, a superior electrochemical performance was achieved using this composite sheet for the anode. A 50 μm-thick rGO/Li composite foil electrode showed stable cycling for > 1 600 h at 1 mA cm−2 and 1 mAh cm−2 in symmetrical cells in an ether-based electrolyte. A full cell consisting of a 50 μm-thick rGO/Li composite foil anode and a sulfurized polyacrylonitrile cathode had a high capacity retention of 675 mAh g−1 after 220 cycles at 0.2 C.
  • loading
  • [1]
    Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews,2017,117(15):10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [2]
    Zhang J, Su Y, Zhang Y. Recent advances in research on anodes for safe and efficient lithium–metal batteries[J]. Nanoscale,2020,12(29):15528-15559. doi: 10.1039/D0NR03833D
    [3]
    Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology,2017,12(3):194-206. doi: 10.1038/nnano.2017.16
    [4]
    Zhang Y, Zuo T T, Popovic J, et al. Towards better Li metal anodes: challenges and strategies[J]. Materials Today,2020,33:56-74. doi: 10.1016/j.mattod.2019.09.018
    [5]
    Chen S, Dai F, Cai M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters,2020,5(10):3140-3151. doi: 10.1021/acsenergylett.0c01545
    [6]
    Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy,2019,4(3):180-186. doi: 10.1038/s41560-019-0338-x
    [7]
    Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy,2018,3(1):16-21.
    [8]
    艾新平. 可充金属锂负极, 路在何方?[J]. 储能科学与技术, 2018, 7(01): 37-39

    AI Xin-ping, What is the future of lithium metal anodes? [J] Energy Storage Science and Technology, 2018, 7(01): 37-39.
    [9]
    Chen H, Yang Y, Boyle D T, et al. Free-standing ultra-thin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy,2021,6(8):790-798. doi: 10.1038/s41560-021-00833-6
    [10]
    Gao J, Chen C, Dong Q, et al. Stamping flexible Li alloy anodes[J]. Advanced Materials,2021,33(11):2005305. doi: 10.1002/adma.202005305
    [11]
    Du J, Wang W, Wan M, et al. Doctor-blade casting fabrication of ultra-thin Li metal electrode for high-energy-density batteries[J]. Advanced Energy Materials,2021,11(45):2102259. doi: 10.1002/aenm.202102259
    [12]
    Zhang Q, Zhang X, Yan C, et al. Electrochemical method of preparing ultra-thin lithium metal anode involves preparing aqueous electrolyte solution, immersing copper electrode in aqueous solution, cleaning copper electrode, electrochemical depositing in liquid electrolyte: CN108346778-A[P].
    [13]
    Zhu Y, Pande V, Li L, et al. Design principles for self-forming interfaces enabling stable lithium-metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(44):27195-27203. doi: 10.1073/pnas.2001923117
    [14]
    袁志钟 戴起勋. 金属材料学[M]. 第3版. 北京: 化学工业出版社, 2020

    YUAN Zhi-zhong, DAI Qi-xun. Metallic Materials[M]. 3rd Edition. Beijing: Chemical Industry Press, 2020
    [15]
    Cheng Y, Chen J, Chen Y, et al. Lithium host: advanced architecture components for lithium metal anode[J]. Energy Storage Materials,2021,38:276-298. doi: 10.1016/j.ensm.2021.03.008
    [16]
    黄佳琦, 詹迎新, 石鹏, et al. 锂金属负极亲锂骨架的研究进展[J]. 高等学校化学学报,2021,42(5):1569-1580.

    HUANG Jia-Qi, ZHAN Ying-xin, SHI Peng, et al. Recent progress of lithiophilic host for lithium metal anode[J]. Chemical Journal of Chinese Universities,2021,42(5):1569-1580.
    [17]
    Ni S, Tan S, An Q, et al. Three-dimensional porous frameworks for lithium dendrite suppression[J]. Journal of Energy Chemistry,2020,44:73-89. doi: 10.1016/j.jechem.2019.09.031
    [18]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [19]
    Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. doi: 10.1038/nmat1849
    [20]
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [21]
    Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology,2016,11(7):626-632. doi: 10.1038/nnano.2016.32
    [22]
    Zhang R, Chen X-R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [23]
    Zhou Y, Zhang X, Ding Y, et al. Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries[J]. Advanced Materials,2020,32(48):2005763. doi: 10.1002/adma.202005763
    [24]
    Wang A, Tang S, Kong D, et al. Bending-tolerant anodes for lithium-metal Batteries[J]. Advanced Materials,2018,30(1):1703891. doi: 10.1002/adma.201703891
    [25]
    Hu M, Tong Z, Cui C, et al. Facile, atom-economic, chemical thinning strategy for ultra-thin lithium foils[J]. Nano Letters,2022,22(7):3047-3053. doi: 10.1021/acs.nanolett.2c00338
    [26]
    Chen X, Hou T Z, Li B, et al. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode[J]. Energy Storage Materials,2017,8:194-201. doi: 10.1016/j.ensm.2017.01.003
    [27]
    程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展,2018,30(1):51. doi: 10.7536/PC170704

    CHENG Xin-bing, ZHANG Qiang. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry,2018,30(1):51. doi: 10.7536/PC170704
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(474) PDF Downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return