Volume 38 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
QIN Miao, Chaima Merzougui, SU Yi-meng, LI Yong-feng, CHEN Wei-yi, HUANG Di. Recent developments in MXene and MXene/carbon composites for use in biomedical applications. New Carbon Mater., 2023, 38(3): 496-509. doi: 10.1016/S1872-5805(23)60730-9
Citation: QIN Miao, Chaima Merzougui, SU Yi-meng, LI Yong-feng, CHEN Wei-yi, HUANG Di. Recent developments in MXene and MXene/carbon composites for use in biomedical applications. New Carbon Mater., 2023, 38(3): 496-509. doi: 10.1016/S1872-5805(23)60730-9

Recent developments in MXene and MXene/carbon composites for use in biomedical applications

doi: 10.1016/S1872-5805(23)60730-9
Funds:  This work has been supported by the National Natural Science Foundation of China (12272253, 22278291, 11902214, 82103147) and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SX-AT008, 2021SX-AT009)
More Information
  • Corresponding author: LI Yong-feng, Associate professor. E-mail: liyongfeng@tyut.edu.cn; HUANG Di, Professor. E-mail: huangjw2067@163.com
  • Received Date: 2022-08-01
  • Accepted Date: 2023-03-06
  • Rev Recd Date: 2023-03-04
  • Available Online: 2023-03-13
  • Publish Date: 2023-06-01
  • MXene is a revolutionary two-dimensional material that has a distinct layer structure and the chemical composition of transition metal carbides. It has special physicochemical characteristics including a large specific surface area, good electrical conductivity, excellent mechanical properties and photothermal behavior, which give it a valuable variety of applications. To endow it a broader range of applications, it is often composited with carbon-based materials. Therefore, MXene and MXene/carbon composites have attracted much attention in applications such as electronics, biosensors and biomedicine over recent years. In this review, the fabrication, modification and biomedical applications of MXene and MXene/carbon composites are introduced, focussing on their biomedical applications, such as biosensors, antibacterial materials, drug delivery, and the diagnosis and treatment of diseases.
  • loading
  • [1]
    Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [2]
    Xiong D B, Li X F, Bai Z M, et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small,2018,14(17):1703419.
    [3]
    Naguib M, Gogotsi Y. Synthesis of two-dimensional materials by selective extraction[J]. Accounts of Chemical Research,2015,48(1):128-135. doi: 10.1021/ar500346b
    [4]
    Alhabeb M, Maleski K, Mathis T S, et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene)[J]. Angewandte Chemie-International Edition,2018,57(19):5444-5448. doi: 10.1002/anie.201802232
    [5]
    Faraji M, Bafekry A, Fadlallah M M, et al. Surface modification of titanium carbide MXene monolayers (Ti2C and Ti3C2) via chalcogenide and halogenide atoms[J]. Physical Chemistry Chemical Physics,2021,23(28):15319-15328. doi: 10.1039/D1CP01788H
    [6]
    Wu M, Wang B, Hu Q, et al. The synthesis process and thermal stability of V2C MXene[J]. Materials (Basel),2018,11(11):2112. doi: 10.3390/ma11112112
    [7]
    Wang L, Zhang M Y, Yang B, et al. Recent sdvances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: Synthesis, structure, application, and perspective[J]. Small Methods,2021,5(7):e2100409. doi: 10.1002/smtd.202100409
    [8]
    Ma P, Fang D L, Liu Y L, et al. MXene-based materials for electrochemical sodium-ion storage[J]. Advanced Science,2021,8(11):2003185. doi: 10.1002/advs.202003185
    [9]
    Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):16098.
    [10]
    Wang H W, Naguib M, Page K, et al. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function[J]. Chemistry of Materials,2016,28(1):349-359. doi: 10.1021/acs.chemmater.5b04250
    [11]
    Zhong Q, Li Y, Zhang G K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives[J]. Chemical Engineering Journal,2021,409:128099. doi: 10.1016/j.cej.2020.128099
    [12]
    You Z Y, Liao Y L, Li X, et al. State-of-the-art recent progress in MXene-based photocatalysts: A comprehensive review[J]. Nanoscale,2021,13(21):9463-9504. doi: 10.1039/D1NR02224E
    [13]
    Mohideen M M, Liu Y, Ramakrishna S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation[J]. Applied Energy,2020,257:114027. doi: 10.1016/j.apenergy.2019.114027
    [14]
    Liao G F, He F, Li Q, et al. Emerging graphitic carbon nitride-based materials for biomedical applications[J]. Progress in Materials Science,2020,112:100666. doi: 10.1016/j.pmatsci.2020.100666
    [15]
    Bandar Abadi M, Weissing R, Wilhelm M, et al. Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces,2021,13(29):34996-35007.
    [16]
    Gazzi A, Fusco L, Khan A, et al. Photodynamic therapy based on graphene and MXene in cancer theranostics[J]. Frontiers in Bioengineering and Biotechnology,2019,7:295. doi: 10.3389/fbioe.2019.00295
    [17]
    Tao Q, Dahlqvist M, Lu J, et al. Two-dimensional Mo133C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering[J]. Nature Communications,2017,8:14949. doi: 10.1038/ncomms14949
    [18]
    Sang X H, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano,2016,10(10):9193-9200. doi: 10.1021/acsnano.6b05240
    [19]
    Luo R, Li R X, Jiang C L, et al. Facile synthesis of cobalt modified 2D titanium carbide with enhanced hydrogen evolution performance in alkaline media[J]. International Journal of Hydrogen Energy,2021,46(64):32536-32545. doi: 10.1016/j.ijhydene.2021.07.110
    [20]
    Kim Y J, Kim S J, Seo D, et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis[J]. Chemistry of Materials,2021,33(16):6346-6355. doi: 10.1021/acs.chemmater.1c01263
    [21]
    Wei Y, Xiang L J, Ou H J, et al. MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality[J]. Advanced Functional Materials,2020,30(48):2005135. doi: 10.1002/adfm.202005135
    [22]
    Xu J X, Peng T, Qin X, et al. Recent advances in 2D MXenes: Preparation, intercalation and applications in flexible devices[J]. Journal of Materials Chemistry A,2021,9(25):14147-14171. doi: 10.1039/D1TA03070A
    [23]
    Wei Y, Zhang P, Soomro R A, et al. Advances in the synthesis of 2D MXenes[J]. Advanced Materials,2021,33(39):2103148. doi: 10.1002/adma.202103148
    [24]
    Xuan J N, Wang Z Q, Chen Y Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie-International Edition,2016,55(47):14569-14574. doi: 10.1002/anie.201606643
    [25]
    Ren X Y, Huo M F, Wang M M, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging[J]. ACS Nano,2019,13(6):6438-6454. doi: 10.1021/acsnano.8b09327
    [26]
    Liu G, Zou J, Tang Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/Chemo Synergistic Therapy[J]. ACS Applied Materials & Interfaces,2017,9(46):40077-40086.
    [27]
    Yang Z, Fu X, Ma D, et al. Growth factor-decorated Ti3C2 MXene/MoS2 2D Bio-heterojunctions with quad-channel photonic disinfection for effective regeneration of bacteria-invaded cutaneous tissue[J]. Small, 2021: e2103993.
    [28]
    Zhou X, Wang Z Y, Chan Y K, et al. Infection micromilieu-activated nanocatalytic membrane for orchestrating rapid sterilization and stalled chronic wound regeneration[J]. Advanced Functional Materials, 2022, 32(7): 2109469.
    [29]
    Zhang Y, Chang T-H, Jing L, et al. Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition[J]. ACS Applied Materials & Interfaces,2020,12(7):8392-8402.
    [30]
    Cai Y C, Shen J, Yang C W, et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range[J]. Science Advances,2020,6(48):eabb5367. doi: 10.1126/sciadv.abb5367
    [31]
    Li X, He L, Li Y, et al. Healable, degradable and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensor[J]. ACS Nano,2021,15(4):7765-7773.
    [32]
    Li X, Lu Y L, Liu Q J. Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects[J]. Talanta,2021,235:122726.
    [33]
    Wang Y H, Zeng Z X, Qiao J Y, et al. Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets[J]. Talanta,2021,221:121605.
    [34]
    Zhao Y, Gao W, Dai K, et al. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing[J]. 2021, 33(45): 2102332.
    [35]
    Cheng Y F, Ma Y A, Li L Y, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. ACS Nano,2020,14(2):2145-2155. doi: 10.1021/acsnano.9b08952
    [36]
    Gao Y J, Yu L T, Yeo J C, et al. Flexible hybrid sensors for health monitoring: Materials and mechanisms to render wearability[J]. Advanced Materials,2020,32(15):1902133. doi: 10.1002/adma.201902133
    [37]
    Cai Y, Shen J, Ge G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano,2018,12(1):56-62. doi: 10.1021/acsnano.7b06251
    [38]
    Fan Z, Zhang L, Tan Q, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements[J]. Smart Materials and Structures,2021,30(3):035024. doi: 10.1088/1361-665X/abe030
    [39]
    Shi X, Wang H, Xie X, et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale "brick-and-mortar" architecture[J]. ACS Nano,2019,13(1):649-659. doi: 10.1021/acsnano.8b07805
    [40]
    Liao H, Guo X L, Wan P B, et al. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors[J]. Advanced Functional Materials,2019,29(39):1904507.
    [41]
    Wu M Y, Zhang Q, Fang Y Y, et al. Polylysine-modified MXene nanosheets with highly loaded glucose oxidase as cascade nanoreactor for glucose decomposition and electrochemical sensing[J]. Journal of Colloid and Interface Science,2021,586:20-29. doi: 10.1016/j.jcis.2020.10.065
    [42]
    Chen S X, Shi M, Yang J, et al. MXene/carbon nanohorns decorated with conductive molecularly imprinted poly(hydroxymethyl-3, 4-ethylenedioxythiophene) for voltammetric detection of adrenaline[J]. Microchimica Acta,2021,188(12):420.
    [43]
    Shankar S S, Shereema R M, Rakhi R B. Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes[J]. ACS Applied Materials & Interfaces,2018,10(50):43343-43351.
    [44]
    Cheng J, Hu K, Liu Q, et al. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti(3)C(2)T(x)-MXene as enhancer and covalent organic frameworks as labels[J]. Analytical and Bioanalytical Chemistry,2021,413(9):2543-2551. doi: 10.1007/s00216-021-03212-y
    [45]
    Manohara Reddy Y V, Shin J H, Hwang J, et al. Fine-tuning of MXene-nickel oxide-reduced graphene oxide nanocomposite bioelectrode: Sensor for the detection of influenza virus and viral protein[J]. Biosensors and Bioelectronics,2022,214:114511. doi: 10.1016/j.bios.2022.114511
    [46]
    Harding C J, Huwiler S G, Somers H, et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus[J]. Nature Communications,2020,11(1):4817. doi: 10.1038/s41467-020-18139-8
    [47]
    Wu Y, Zheng W, Xiao Y, et al. Multifunctional, robust, and porous PHBV—GO/MXene composite membranes with good hydrophilicity, antibacterial activity, and platelet adsorption performance[J]. 2021, 13(21): 3748.
    [48]
    Li B, Yang Y, Wu N, et al. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film[J]. ACS Nano,2022,16(11):19293-19304. doi: 10.1021/acsnano.2c08678
    [49]
    Yang C, Luo Y, Lin H, et al. Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration[J]. ACS Nano,2021,15(1):1086-1099. doi: 10.1021/acsnano.0c08045
    [50]
    Zhou L, Zheng H, Liu Z X, et al. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing[J]. ACS Nano,2021,15(2):2468-2480. doi: 10.1021/acsnano.0c06287
    [51]
    Zheng K Y, Li S, Jing L, et al. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters[J]. Advanced Healthcare Materials,2020,9(19):e2001007. doi: 10.1002/adhm.202001007
    [52]
    Zhu X Q, Zhu Y N, Jia K, et al. A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Tx for effective synergetic antibacterial applications[J]. Nanosacle,2022,12(37):19129-19141.
    [53]
    Yin J, Han Q, Zhang J, et al. MXene-based hydrogels endow polyetheretherketone with effective osteogenicity and combined treatment of osteosarcoma and bacterial infection[J]. ACS Applied Materials & Interfaces,2020,12(41):45891-45903.
    [54]
    Liu Y X, Tian Y, Han Q Y, et al. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application[J]. Chemical Engineering Journal,2021,410:128209. doi: 10.1016/j.cej.2020.128209
    [55]
    Li J, Li Z, Liu X, et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing[J]. Nature Communications,2021,12(1):1224. doi: 10.1038/s41467-021-21435-6
    [56]
    Wu Z, Shi J, Song P, et al. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery[J]. International Journal of Biological Macromolecules,2021,183:870-879. doi: 10.1016/j.ijbiomac.2021.04.164
    [57]
    Jin L, Guo X Q, Gao D, et al. NIR-responsive MXene nanobelts for wound healing[J]. Npg Asia Materials,2021,13(1):9. doi: 10.1038/s41427-020-00268-7
    [58]
    Liu Y, Han Q, Yang W, et al. Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy[J]. Materials Science & Engineering C-Materials for Biological Applications,2020,116:111212.
    [59]
    Gao W, Zhang W, Yu H, et al. 3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment[J]. Frontiers in bioengineering and biotechnology,2022,10:996177. doi: 10.3389/fbioe.2022.996177
    [60]
    Li L, Lu Y, Qian Z, et al. A Ti2N MXene-based nanosystem with ultrahigh drug loading for dual-strategy synergistic oncotherapy[J]. Nanoscale,2021,13(44):18546-18557. doi: 10.1039/D1NR04008A
    [61]
    Fusco L, Gazzi A, Peng G, et al. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics[J]. Theranostics,2020,10(12):5435-5488. doi: 10.7150/thno.40068
    [62]
    Zhang Y, Guo Z, Zhu H, et al. Synthesis of liquid gallium@reduced graphene oxide core-shell nanoparticles with enhanced photoacoustic and photothermal performance[J]. Journal of the American Chemical Society,2022,144(15):6779-6790. doi: 10.1021/jacs.2c00162
    [63]
    Zada S, Dai W H, Kai Z, et al. Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance[J]. Angewandte Chemie-International Edition,2020,59(16):6601-6606. doi: 10.1002/anie.201916748
    [64]
    Liu Z, Lin H, Zhao M, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics[J]. Theranostics,2018,8(6):1648-1664. doi: 10.7150/thno.23369
    [65]
    Dai C, Chen Y, Jing X, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation[J]. ACS Nano,2017,11(12):12696-12712. doi: 10.1021/acsnano.7b07241
    [66]
    Tang W, Dong Z, Zhang R, et al. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window[J]. ACS Nano,2019,13(1):284-294. doi: 10.1021/acsnano.8b05982
    [67]
    Han X, Huang J, Lin H, et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer[J]. Advanced Healthcare Materials,2018,7(9):e1701394. doi: 10.1002/adhm.201701394
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article Views(524) PDF Downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return