Volume 38 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
CHEN Yue, ZHAO Lu-kang, ZHOU Jun-long, BIAN Yu-hua, GAO Xuan-wen, CHEN Hong, LIU Zhao-meng, LUO Wen-bin. Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes. New Carbon Mater., 2023, 38(4): 698-724. doi: 10.1016/S1872-5805(23)60734-6
Citation: CHEN Yue, ZHAO Lu-kang, ZHOU Jun-long, BIAN Yu-hua, GAO Xuan-wen, CHEN Hong, LIU Zhao-meng, LUO Wen-bin. Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes. New Carbon Mater., 2023, 38(4): 698-724. doi: 10.1016/S1872-5805(23)60734-6

Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes

doi: 10.1016/S1872-5805(23)60734-6
Funds:  This work was supported by the National Natural Science Foundation of China (52272194), Liaoning Revitalization Talents Program (XLYC2007155), the Fundamental Research Funds for the Central Universities (N2025018, N2025009). This manuscript was written through the contributions of all the authors. All authors have given approval to the final version of the manuscript
More Information
  • Author Bio:

    陈 粤和赵鲁康为共同第一作者

  • Corresponding author: GAO Xuan-wen, Ph.D, Associate Professor. E-mail: gaoxuanwen@mail.neu.edu.cn; LUO Wen-bin, Ph.D, Professor. E-mail: luowenbin@smm.neu.edu.cn
  • Received Date: 2023-02-15
  • Accepted Date: 2023-03-24
  • Rev Recd Date: 2023-03-23
  • Available Online: 2023-03-31
  • Publish Date: 2023-08-01
  • Compositing lithium metal anodes (LMAs) with carbon-based materials has been given much attention because of the latter’s low density, high mechanical strength, stable electrochemical properties, and large specific surface area. Such a composite LMA stands out because of its ability to reduce the volume expansion, lower the local current density, and provide active nucleation sites for uniform Li+ plating. Recent research advances in carbon-based materials as scaffolds to make composite anodes are reviewed, including composites with pure metals and their alloys, and compositing strategies to improve anode stability.
  • loading
  • [1]
    Gür T M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science,2018,11(10):2696-2767 DOI: 10.1039/C8EE01419A .
    [2]
    Carley S, Konisky D M. The justice and equity implications of the clean energy transition[J]. Nature Energy,2020,5(8):569-577. doi: 10.1038/s41560-020-0641-6
    [3]
    Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2020[J]. Earth System Science Data,2020,12(4):3269-3340. doi: 10.5194/essd-12-3269-2020
    [4]
    Zhao X, Ma X, Chen B, et al. Challenges toward carbon neutrality in China: Strategies and countermeasures [J]. Resources Conservation And Recycling, 2022, 176:105959 DOI: 10.1016/j.resconrec.2021.105959.
    [5]
    Fleischmann S, Mitchell J B, Wang R, et al. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chemical Reviews,2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170
    [6]
    Koohi-Fayegh S, Rosen M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage,2020,27:101047. doi: 10.1016/j.est.2019.101047
    [7]
    Reddy M V, Mauger A, Julien C M, et al. Brief history of early lithium-battery development [J]. Materials, 2020, 13(8):1884 DOI: 10.3390/ma13081884.
    [8]
    Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews,2017,117(15):10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [9]
    Wang J B, Ren Z, Hou Y, et al. A review of graphene synthesisatlow temperatures by CVD methods[J]. New Carbon Materials,2020,35(3):193-208. doi: 10.1016/S1872-5805(20)60484-X
    [10]
    Jin L, Zhang H, Li S, et al. Exchange of li and AgNO3 enabling stable 3D lithium metal anodes with embedded lithophilic nanoparticles and a solid electrolyte interphase inducer[J]. Acs Applied Materials & Interfaces,2021,13(32):38425-38431 DOI: 10.1021/acsami.1c11733 .
    [11]
    Fan E, Li L, Wang Z, et al. Sustainable recycling technology for li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews,2020,120(14):7020-7063. doi: 10.1021/acs.chemrev.9b00535
    [12]
    Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [13]
    Zhang Y, Zuo T T, Popovic J, et al. Towards better Li metal anodes: Challenges and strategies[J]. Materials Today,2020,33:56-74. doi: 10.1016/j.mattod.2019.09.018
    [14]
    Liang Y, Xiao Y, Yan C, et al. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes[J]. Journal of Energy Chemistry,2020,48:203-207. doi: 10.1016/j.jechem.2020.01.027
    [15]
    Zhang C, Huang Z, Lv W, et al. Carbon enables the practical use of lithium metal in a battery[J]. Carbon,2017,123:744-755. doi: 10.1016/j.carbon.2017.08.027
    [16]
    Chen T, Wu H P, Wan J, et al. Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes[J]. Journal of Energy Chemistry,2021,62:172-178. doi: 10.1016/j.jechem.2021.03.018
    [17]
    Wang Z, Qi F, Yin L, et al. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes [J]. Advanced Energy Materials, 2020, 10(14):1903843 DOI: 10.1002/aenm.201903843.
    [18]
    Qian H, Li X. Progress in functional solid electrolyte interphases for boosting li metal anode [J]. Acta Physico-Chimica Sinica, 2021, 37(2).
    [19]
    Zhang X L, Ruan Z Q, He Q T, et al. Three-dimensional (3D) nanostructured skeleton substrate composed of hollow carbon fiber/carbon nanosheet/ZnO for stable lithium anode[J]. ACS Applied Materials & Interfaces,2021,13(2):3078-3088.
    [20]
    Wu H, Jia H, Wang C, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials,2021,11(5):1-15.
    [21]
    Zhai P, Wang T, Jiang H, et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials,2021,33(13):2006247. doi: 10.1002/adma.202006247
    [22]
    Lu Q, Jie Y, Meng X, et al. Carbon materials for stable li metal anodes: Challenges, solutions, and outlook[J]. Carbon Energy,2021,3(6):957-975. doi: 10.1002/cey2.147
    [23]
    Meda U S, Lal L, Sushantha M, et al. Solid electrolyte interphase (sei), a boon or a bane for lithium batteries: A review on the recent advances [J]. Journal of Energy Storage, 2021: 103564 DOI: 10.1016/j.est.2021.103564.
    [24]
    Shan X, Zhong Y, Zhang L, et al. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives[J]. Journal Of Physical Chemistry C,2021,125(35):19060-19080. doi: 10.1021/acs.jpcc.1c06277
    [25]
    Yan T, Li F, Xu C, et al. Highly uniform lithiated nafion thin coating on separator as an artificial SEI layer of lithium metal anode toward suppressed dendrite growth[J]. Electrochimica Acta,2022,410:140004. doi: 10.1016/j.electacta.2022.140004
    [26]
    Jumi K I M, Jimin O, Kim J Y, et al. Recent progress and perspectives of solid electrolytes for lithium rechargeable batteries[J]. Journal of the Korean Electrochemical Society,2019,22(3):87-103.
    [27]
    Nie K, Hong Y, Qiu J, et al. Interfaces between cathode and electrolyte in solid state lithium batteries: Challenges and perspectives[J]. Frontiers In Chemistry,2018,6:616. doi: 10.3389/fchem.2018.00616
    [28]
    Zhao C Z, Duan H, Huang J Q, et al. Designing solid-state interfaces on lithium-metal anodes: a review[J]. Science China-Chemistry,2019,62(10):1286-1299. doi: 10.1007/s11426-019-9519-9
    [29]
    Kang D, Xiao M, Lemmon J P. Artificial solid-electrolyte interphase for lithium metal batteries[J]. Batteries & Supercaps,2021,4(3):445-455.
    [30]
    Jin C B, Shi P, Zhang X Q, et al. Advances in carbon materials for stable lithium metal batteries[J]. New Carbon Materials,2022,37(1):1-24. doi: 10.1016/S1872-5805(22)60573-0
    [31]
    Liu Y, Zhai Y, Xia Y, et al. Recent progress of porous materials in lithium-metal batteries[J]. Small Structures,2021,2(5):2000118. doi: 10.1002/sstr.202000118
    [32]
    Chen L, Ding K, Li K, et al. Crystalline porous materials-based solid-state electrolytes for lithium metal batteries[J]. Energy Chem,2022,4(3):100073. doi: 10.1016/j.enchem.2022.100073
    [33]
    Li N, Wei W, Xie K, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries[J]. Nano Letters,2018,18(3):2067-2073. doi: 10.1021/acs.nanolett.8b00183
    [34]
    Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186. doi: 10.1016/j.nanoen.2017.05.015
    [35]
    Yun Q, He Y B, Lv W, et al. Chemical dealloying derived 3D porous current collector for li metal anodes[J]. Advanced Materials,2016,28(32):6932-+. doi: 10.1002/adma.201601409
    [36]
    Guo C, Zhang W, Tu J, et al. Construction of 3D copper-based collector and its application in lithium metal batteries[J]. Progress In Chemistry,2022,34(2):370-383.
    [37]
    Chen J Y, Zhao J, Lei L N, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes[J]. Nano Letters,2020,20(5):3403-3410. doi: 10.1021/acs.nanolett.0c00316
    [38]
    Zhang D, Dai A, Wu M, et al. Lithiophilic 3D porous cuzn current collector for stable lithium metal batteries[J]. ACS Energy Letters,2020,5(1):180-186. doi: 10.1021/acsenergylett.9b01987
    [39]
    Lu Z, Liang Q, Wang B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Advanced Energy Materials,2019,9(7):1803186. doi: 10.1002/aenm.201803186
    [40]
    Pu J, Li J, Zhang K, et al. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits[J]. Nature Communications,2019,10(1):1-10. doi: 10.1038/s41467-018-07882-8
    [41]
    Shang J, Yu W, Wang L, et al. Metallic glass-fiber fabrics: a new type of flexible, super-lightweight, and 3D current collector for lithium batteries[J]. Advanced Materials,2023,35:2211748.
    [42]
    Jin S, Jiang Y, Ji H, et al. Advanced 3D current collectors for lithium-based batteries[J]. Advanced Materials,2018,30(48):1802014. doi: 10.1002/adma.201802014
    [43]
    Xia Y, Hu W, Yao Y, et al. Application of electrodeposited Cu-metal nanoflake structures as 3D current collector in lithium-metal batteries[J]. Nanotechnology,2022,33(24):1361-6528.
    [44]
    Zhang L, Jin Q, Zhao K, et al. 3D hierarchical Cu@Ag nanostructure as a current collector for dendrite-free lithium metal anode[J]. Dalton Transactions,2022,51(43):16565-16573. doi: 10.1039/D2DT02937E
    [45]
    Yang S, Cheng Y, Xiao X, et al. Development and application of carbon fiber in batteries[J]. Chemical Engineering Journal,2020,384:123294. doi: 10.1016/j.cej.2019.123294
    [46]
    Tang K, Xiao J, Li X, et al. Advances of carbon-based materials for lithium metal anodes[J]. Frontiers In Chemistry,2020,8:595972. doi: 10.3389/fchem.2020.595972
    [47]
    Fu A, Wang C, Pei F, et al. Recent advances in hollow porous carbon materials for lithium-sulfur batteries[J]. Small,2019,15(10):1804786. doi: 10.1002/smll.201804786
    [48]
    Wu Z, Sun K, Wang Z. A review of the application of carbon materials for lithium metal batteries[J]. Batteries-Basel,2022,8(11):246. doi: 10.3390/batteries8110246
    [49]
    Deng W, Zhu W, Zhou X, et al. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity[J]. Energy Storage Materials,2018,15:266-273. doi: 10.1016/j.ensm.2018.05.005
    [50]
    Chen H, Yang Y, Boyle D T, et al. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy,2021,6(8):790-798. doi: 10.1038/s41560-021-00833-6
    [51]
    Sun C, Liu Y, Sheng J, et al. Status and prospects of porous graphene networks for lithium-sulfur batteries[J]. Materials Horizons,2020,7(10):2487-2518. doi: 10.1039/D0MH00815J
    [52]
    Xu Q, Yang X, Rao M, et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework[J]. Energy Storage Materials,2020,26:73-82. doi: 10.1016/j.ensm.2019.12.028
    [53]
    Lu K, Xu H, He H, et al. Modulating reactivity and stability of metallic lithium via atomic doping[J]. Journal of Materials Chemistry A,2020,8(20):10363-10369. doi: 10.1039/D0TA02176H
    [54]
    Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances,2019,5(2):eaau7728. doi: 10.1126/sciadv.aau7728
    [55]
    Yuan Y, Chen Z, Yu H, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials,2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027
    [56]
    Wu Y, Rahm E, Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries[J]. Electrochimica Acta,2002,47(21):3491-3507. doi: 10.1016/S0013-4686(02)00317-1
    [57]
    Shao R, Zhu F, Cao Z, et al. Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries[J]. Journal of Materials Chemistry A,2020,8(35):18338-18347. doi: 10.1039/D0TA06647H
    [58]
    Pappas G S, Ferrari S, Huang X, et al. Heteroatom doped-carbon nanospheres as anodes in lithium ion batteries[J]. Materials,2016,9(1):35. doi: 10.3390/ma9010035
    [59]
    Wang Y, Yuan C, Li K, et al. Freestanding porous silicon@ heteroatom-doped porous carbon fiber anodes for high-performance lithium-ion batteries[J]. ACS Applied Energy Materials,2022,5(9):11462-11471. doi: 10.1021/acsaem.2c01898
    [60]
    Dai C, Sun G, Hu L, et al. Recent progress in graphene-based electrodes for flexible batteries[J]. Infomat,2020,2(3):509-526. doi: 10.1002/inf2.12039
    [61]
    Xu Z, Zhang P, Chen J, et al. Growth and growth mechanism of oxide nanocrystals on electrochemically exfoliated graphene for lithium storage[J]. Energy Storage Materials,2019,18:174-181. doi: 10.1016/j.ensm.2018.08.023
    [62]
    Seyyedin S T, Yaftian M R, Sovizi M R. Cobalt oxyhydroxide/graphene oxide nanocomposite for amelioration of electrochemical performance of lithium/sulfur batteries[J]. Journal of Solid State Electrochemistry,2017,21(3):649-656. doi: 10.1007/s10008-016-3411-4
    [63]
    Zhang L, Ma T, Yang Y W, et al. Pomegranate-inspired graphene parcel enables high-performance dendrite-free lithium metal anodes[J]. Advanced Science,2022,9(28):2203178. doi: 10.1002/advs.202203178
    [64]
    Zhang M, Shan Y, Kong Q, et al. Applications of metal-organic framework-graphene composite materials in electrochemical energy storage[J]. Flatchem,2022,32:100332. doi: 10.1016/j.flatc.2021.100332
    [65]
    Yang Y, Ai L, Yu S, et al. 3D-printed porous go framework enabling dendrite-free lithium-metal anodes[J]. ACS Applied Energy Materials,2022,5(12):15666-15672. doi: 10.1021/acsaem.2c03267
    [66]
    Li N, Gan F, Wang P, et al. In situ synthesis of 3D sulfur-doped graphene/sulfur as a cathode material for lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2018,754:64-71. doi: 10.1016/j.jallcom.2018.04.018
    [67]
    Zhu J, Tu W, Pan H, et al. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries[J]. ACS Nano,2020,14(5):5780-5787. doi: 10.1021/acsnano.0c00712
    [68]
    Zhang F, Liu X, Yang M, et al. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes[J]. Nano Energy,2020,69:104443. doi: 10.1016/j.nanoen.2019.104443
    [69]
    Choi Y J, Lee G W, Kim Y H, et al. Microspherical assembly of selectively pyridinic N-doped nanoperforated graphene for stable Li-metal anodes: Synergistic coupling of lithiophilic pyridinic N on perforation edges and low tortuosity via graphene nanoperforation[J]. Chemical Engineering Journal,2023,455:140770. doi: 10.1016/j.cej.2022.140770
    [70]
    Fang Y, Hsieh Y Y, Khosravifar M, et al. Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries[J]. Materials Science and Engineering:B,2021,267:115067. doi: 10.1016/j.mseb.2021.115067
    [71]
    Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials,2019,31(2):1805334. doi: 10.1002/adma.201805334
    [72]
    Zhang R, Wen S, Wang N, et al. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes[J]. Advanced Energy Materials,2018,8(23):1800914. doi: 10.1002/aenm.201800914
    [73]
    Qiao L, Zhang R, Li Y, et al. Super-assembled hierarchical and stable N-doped carbon nanotube nanoarrays for dendrite-free lithium metal batteries[J]. ACS Applied Energy Materials,2021,5(1):815-824.
    [74]
    Wang H, An D, Tian P, et al. Incorporating quantum-sized boron dots into 3D cross-linked rGO skeleton to enable the activity of boron anode for favorable lithium storage[J]. Chemical Engineering Journal,2021,425:130659. doi: 10.1016/j.cej.2021.130659
    [75]
    An Y, Tian Y, Li Y, et al. Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries[J]. Chemical Engineering Journal,2020,400:125843. doi: 10.1016/j.cej.2020.125843
    [76]
    Lu C, Tian M, Wei C, et al. Synergized N, P dual-doped 3D carbon host derived from filter paper for durable lithium metal anodes[J]. Journal of Colloid and Interface Science,2023,632:1-10. doi: 10.1016/j.jcis.2022.11.022
    [77]
    Li H, Liu J, Zhang Y, et al. Mono-atom dispersed graphene foam with nitrogen-doped carbon nanospheres used in preparation of anode material for lithium-sulfur battery, is grown with carbon nanospheres doped with nitrogen atoms and single metal atoms, CN113104840-A [P/OL].
    [78]
    Wang J, Han W Q. A review of heteroatom doped materials for advanced lithium-sulfur batteries[J]. Advanced Functional Materials,2022,32(2):07166.
    [79]
    Wu J, Pan Z, Zhang Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A,2018,6(27):12932-12944. doi: 10.1039/C8TA03968B
    [80]
    Gao C, Li J, Sun K, et al. Controllable lithium deposition behavior hollow of N, O co-doped carbon nanospheres for practical lithium metal batteries[J]. Chemical Engineering Journal,2021,412:128721. doi: 10.1016/j.cej.2021.128721
    [81]
    Tang K, Xiao J, Long M, et al. Superlithiophilic N, S-codoped carbon on Ni foam as a stable 3D host for dendrite-free Li metal anodes[J]. Sustainable Materials and Technologies,2022,32:e00408. doi: 10.1016/j.susmat.2022.e00408
    [82]
    Chen T, Jia W, Yao Z, et al. Partly lithiated graphitic carbon foam as 3D porous current collectors for dendrite-free lithium metal anodes[J]. Electrochemistry Communications,2019,107:106535. doi: 10.1016/j.elecom.2019.106535
    [83]
    Kwon H, Lee J H, Roh Y, et al. An electron-deficient carbon current collector for anode-free Li-metal batteries[J]. Nature Communications,2021,12(1):5537. doi: 10.1038/s41467-021-25848-1
    [84]
    Yang G, Li Y, Tong Y, et al. Lithium plating and stripping on carbon nanotube sponge[J]. Nano Letters,2019,19(1):494-499. doi: 10.1021/acs.nanolett.8b04376
    [85]
    Huang Z, Kong D, Zhang Y, et al. Vertical graphenes grown on a flexible graphite paper as an all-carbon current collector towards stable li deposition [J]. Research, 2020:7163948 DOI: 10.34133/2020/7163948.
    [86]
    Meng Q, Deng B, Zhang H, et al. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene[J]. Energy Storage Materials,2019,16:419-425. doi: 10.1016/j.ensm.2018.06.024
    [87]
    Zhai P, Wang T, Yang W, et al. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes [J]. Advanced Energy Materials, 2019, 9(18):1804019 DOI: 10.1002/aenm.201804019.
    [88]
    Ye H, Xin S, Yin Y X, et al. Stable li plating/stripping electrochemistry realized by a hybrid li reservoir in spherical carbon granules with 3D conducting skeletons[J]. Journal of the American Chemical Society,2017,139(16):5916-5922. doi: 10.1021/jacs.7b01763
    [89]
    Sun Y, Zhao W, Wang X, et al. Progress of carbon and metal-based three-dimensional materials for dendrite-proof and interface-compatible lithium metal anode[J]. Applied Surface Science,2022,598:153785. doi: 10.1016/j.apsusc.2022.153785
    [90]
    Tian B, Huang Z, Xu X, et al. Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes[J]. Journal of Materials Science & Technology,2023,132:50-58.
    [91]
    Yang C, Yao Y, He S, et al. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode[J]. Advanced Materials,2017,29(38):1702714. doi: 10.1002/adma.201702714
    [92]
    Sun Q, Zhai W, Hou G, et al. In situ synthesis of a lithiophilic ag-nanoparticles-decorated 3D porous carbon framework toward dendrite-free lithium metal anodes[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):15219-15227.
    [93]
    Hou G, Ren X, Ma X, et al. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge[J]. Journal of Power Sources,2018,386:77-84. doi: 10.1016/j.jpowsour.2018.03.049
    [94]
    Xue P, Liu S, Shi X, et al. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes[J]. Advanced Materials,2018,30(44):1804165. doi: 10.1002/adma.201804165
    [95]
    Yan K, Lu Z, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy,2016,1(3):16010. doi: 10.1038/nenergy.2016.10
    [96]
    Lan X, Ye W, Zheng H, et al. Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth[J]. Nano Energy,2019,66:104178. doi: 10.1016/j.nanoen.2019.104178
    [97]
    Li D, Gao Y, Xie C, et al. Au-coated carbon fabric as Janus current collector for dendrite-free flexible lithium metal anode and battery[J]. Applied Physics Reviews,2022,9(1):011424. doi: 10.1063/5.0083830
    [98]
    Xu K, Zhu M, Wu X, et al. Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode[J]. Energy Storage Materials,2019,23:587-593. doi: 10.1016/j.ensm.2019.03.025
    [99]
    Matsui M. Study on electrochemically deposited Mg metal[J]. Journal of Power Sources,2011,196(16):7048-7055. doi: 10.1016/j.jpowsour.2010.11.141
    [100]
    Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta,2012,76:270-274. doi: 10.1016/j.electacta.2012.05.001
    [101]
    Ding Y, Hu L, He D, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery[J]. Chemical Engineering Journal,2020,380:122489. doi: 10.1016/j.cej.2019.122489
    [102]
    Tan X, Wu Y, Lin X, et al. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries[J]. Inorganic Chemistry Frontiers,2020,7(24):4939-4955. doi: 10.1039/D0QI00929F
    [103]
    Reddy R C K, Lin J, Chen Y, et al. Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries[J]. Coordination Chemistry Reviews,2020,420:213434. doi: 10.1016/j.ccr.2020.213434
    [104]
    Yu B, Tao T, Mateti S, et al. Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries[J]. Advanced Functional Materials,2018,28(36):1803023. doi: 10.1002/adfm.201803023
    [105]
    Yu Z, Qu X, Dou A, et al. Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries[J]. Ceramics International,2021,47(2):1758-1765. doi: 10.1016/j.ceramint.2020.09.001
    [106]
    Xiang M, Wu H, Liu H, et al. A flexible 3D multifunctional MgO-decorated carbon foam@ CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2017,27(37):1702573. doi: 10.1002/adfm.201702573
    [107]
    Zhang Y, Liu B, Hitz E, et al. A carbon-based 3D current collector with surface protection for Li metal anode[J]. Nano Research,2017,10(4):1356-1365. doi: 10.1007/s12274-017-1461-2
    [108]
    Wang T S, Liu X, Wang Y, et al. High areal capacity dendrite-free li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state li metal batteries[J]. Advanced Functional Materials,2021,31(2):2001973. doi: 10.1002/adfm.202001973
    [109]
    Yue X Y, Bao J, Qiu Q Q, et al. Copper decorated ultralight 3D carbon skeleton derived from soybean oil for dendrite-free Li metal anode[J]. Chemical Engineering Journal,2020,391:123516. doi: 10.1016/j.cej.2019.123516
    [110]
    Zeng L, Zhou T, Xu X, et al. General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route[J]. Science China-Materials,2022,65(2):337-348. doi: 10.1007/s40843-021-1764-x
    [111]
    Xu C, Wang H, Liu X, et al. Lithiophilic vanadium oxide coated three-dimensional carbon network design towards stable lithium metal anode[J]. Journal of Power Sources,2023,562:232778. doi: 10.1016/j.jpowsour.2023.232778
    [112]
    Ye C, Zhang L, Guo C, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries[J]. Advanced Functional Materials,2017,27(33):1702524. doi: 10.1002/adfm.201702524
    [113]
    He J, Manthiram A. 3D CoSe@ C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li-S full cells[J]. Advanced Energy Materials,2020,10(41):2002654. doi: 10.1002/aenm.202002654
    [114]
    Gao C, Hong B, Sun K, et al. Self-suppression of lithium dendrite with aluminum nitride nanoflake additive in 3D carbon paper for lithium metal batteries[J]. Energy Technology,2020,8(7):1901463. doi: 10.1002/ente.201901463
    [115]
    Zhu J, Chen J, Luo Y, et al. Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode[J]. Energy Storage Materials,2019,23:539-546. doi: 10.1016/j.ensm.2019.04.005
    [116]
    Song Z, Liu Y, Wang Z, et al. Synergistic modulation of Li nucleation/growth enabled by CNTs-wrapped lithiophilic CoP/Co2P decorated hollow carbon polyhedron host for stable lithium metal anodes [J]. Nano Research, 2023:4961–4969 DOI: 10.1007/s12274-022-5179-4.
    [117]
    Cao W, Chen W, Lu M, et al. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries[J]. Journal of Energy Chemistry,2023,76:648-656. doi: 10.1016/j.jechem.2022.09.025
    [118]
    Luo L, Li J, Yaghoobnejad Asl H, et al. A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell[J]. Advanced Materials,2019,31(48):1904537. doi: 10.1002/adma.201904537
    [119]
    Wang Z, Wang J, Mao Q, et al. Uniform lithium deposition and dissolution via metallic phosphides medium for stable cycling lithium metal batteries[J]. Chemical Engineering Journal,2021,407:126861. doi: 10.1016/j.cej.2020.126861
    [120]
    Zhang X, Jin S, Seo M H, et al. Hierarchical porous structure construction for highly stable self-supporting lithium metal anode[J]. Nano Energy,2022,93:106905. doi: 10.1016/j.nanoen.2021.106905
    [121]
    Zhang W, Jin H, Du Y, et al. Sulfur and nitrogen codoped Nb2C MXene for dendrite-free lithium metal battery[J]. Electrochimica Acta,2021,390:138812. doi: 10.1016/j.electacta.2021.138812
    [122]
    Shi H, Yue M, Zhang C J, et al. 3D flexible, conductive, and recyclable Ti3C2Tx mxene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode[J]. ACS Nano,2020,14(7):8678-8688. doi: 10.1021/acsnano.0c03042
    [123]
    Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2Tx mxene@zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries[J]. ACS Nano,2019,13(10):11676-11685. doi: 10.1021/acsnano.9b05599
    [124]
    Chen Q, Wei Y, Zhang X, et al. Vertically aligned mxene nanosheet arrays for high-rate lithium metal anodes[J]. Advanced Energy Materials,2022,12(18):2200072. doi: 10.1002/aenm.202200072
    [125]
    Shen Y, Pu Z, Zhang Y, et al. MXene/ZnO flexible freestanding film as a dendrite-free support in lithium metal batteries[J]. Journal of Materials Chemistry A,2022,10(33):17199-17207. doi: 10.1039/D2TA04797G
    [126]
    Fang Y Z, Liang S, Zhang X, et al. Li (110) lattice plane evolution induced by a 3D MXene skeleton for stable lithium metal anodes[J]. Chemical Communications,2022,58(67):9373-9376. doi: 10.1039/D2CC03288K
    [127]
    Wang C Y, Zheng Z J, Feng Y Q, et al. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries[J]. Nano Energy,2020,74:104817. doi: 10.1016/j.nanoen.2020.104817
    [128]
    Guo C, Yang H, Naveed A, et al. AlF 3-Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes[J]. Chemical Communications,2018,54(60):8347-8350. doi: 10.1039/C8CC04422H
    [129]
    Duan H, Zhang J, Chen X, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. Journal of the American Chemical Society,2018,140(51):18051-18057. doi: 10.1021/jacs.8b10488
    [130]
    Shi H, Zhang C J, Lu P, et al. Conducting and lithiophilic mxene/graphene framework for high-capacity, dendrite-free lithium-metal anodes[J]. ACS Nano,2019,13(12):14308-14318. doi: 10.1021/acsnano.9b07710
    [131]
    Xia Y, Mathis T S, Zhao M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature,2018,557(7705):409-412. doi: 10.1038/s41586-018-0109-z
    [132]
    Tan J, Matz J, Dong P, et al. A growing appreciation for the role of lif in the solid electrolyte interphase[J]. Advanced Energy Materials,2021,11(16):2100046. doi: 10.1002/aenm.202100046
    [133]
    Zhao J, Liao L, Shi F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. Journal of the American Chemical Society,2017,139(33):11550-11558. doi: 10.1021/jacs.7b05251
    [134]
    Liu Z, He B, Zhang Z, et al. Lithium/graphene composite anode with 3D structural lif protection layer for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces,2022,14(2):2871-2880.
    [135]
    Shang H, Zuo Z, Li Y. Highly lithiophilic graphdiyne nanofilm on 3D free-standing Cu nanowires for high-energy-density electrodes[J]. ACS Applied Materials & Interfaces,2019,11(19):17678-17685.
    [136]
    Kang H, Hua B, Gao P, et al. Ni/Graphdiyne composites inhibit dendrite growth in lithium metal anodes[J]. Electrochimica Acta,2023,440:141744. doi: 10.1016/j.electacta.2022.141744
    [137]
    Zhu M, Yin C, Wang Q, et al. Columnar lithium deposition guided by graphdiyne nanowalls toward a stable lithium metal anode[J]. ACS Applied Materials & Interfaces,2022,14(50):55700-55708.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article Views(455) PDF Downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return