Volume 38 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Michio Inagaki, HUANG Zheng-hong. Carbon materials for water desalination by capacitive deionization. New Carbon Mater., 2023, 38(3): 405-437. doi: 10.1016/S1872-5805(23)60736-X
Citation: Michio Inagaki, HUANG Zheng-hong. Carbon materials for water desalination by capacitive deionization. New Carbon Mater., 2023, 38(3): 405-437. doi: 10.1016/S1872-5805(23)60736-X

Carbon materials for water desalination by capacitive deionization

doi: 10.1016/S1872-5805(23)60736-X
More Information
  • Corresponding author: Michio Inagaki, Professor. E-mail: im-ii@ace.ocn.ne.jp; HUANG Zheng-hong, Professor. E-mail: zhhuang@mail.tsinghua.edu.cn
  • Received Date: 2023-01-27
  • Accepted Date: 2023-04-06
  • Rev Recd Date: 2023-04-04
  • Available Online: 2023-04-11
  • Publish Date: 2023-06-01
  • Recent developments on the capacitive deionization (CDI) technique for water desalination are reviewed with a focus on carbon as the electrode material. The capacity and rate of salt adsorption and charge efficiency of various types of CDI cells, i.e. flow-by, membrane, flow-through-electrode, and flowing electrode cells are compared. Various carbon electrode materials for capacitor-type and battery-type cells are discussed. The flowing electrode cell with the short-circuit operation mode seems to be the most promising one for practical applications.
  • loading
  • [1]
    Gao M, Zhu L, Peh C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science,2019,12(3):841-864.
    [2]
    Huang Z H, Yang Z, Kang F, et al. Carbon electrodes for capacitive deionization[J]. Journal of Materials Chemistry A,2017,5(2):470-496. doi: 10.1039/C6TA06733F
    [3]
    Zhang C, He D, Ma J, et al. Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review[J]. Water Research,2018,128:314-330. doi: 10.1016/j.watres.2017.10.024
    [4]
    Tang W, Liang J, He D, et al. Various cell architectures of capacitive deionization: Recent advances and future trends[J]. Water Research,2019,150:225-251. doi: 10.1016/j.watres.2018.11.064
    [5]
    Anis S F, Hashaikeh R, Hilal N. Functional materials in desalination: A review[J]. Desalination,2019,468:114077.
    [6]
    Kim N, Lee J, Kim S, et al. Short review of multichannel membrane capacitive deionization: principle, current status, and future prospect[J]. Applied Sciences,2020,10(2):683. doi: 10.3390/app10020683
    [7]
    Vafakhah S, Beiramzadeh Z, Saeedikhani M, et al. A review on free-standing electrodes for energy-effective desalination: Recent advances and perspectives in capacitive deionization[J]. Desalination,2020,493:114662. doi: 10.1016/j.desal.2020.114662
    [8]
    Xing W, Liang J, Tang W, et al. Versatile applications of capacitive deionization (CDI)-based technologies[J]. Desalination,2020,482:114390. doi: 10.1016/j.desal.2020.114390
    [9]
    Oladunni J, Zain J H, Hai A, et al. A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice[J]. Separation and Purification Technology,2018,207:291-320. doi: 10.1016/j.seppur.2018.06.046
    [10]
    Nakayama Y, Imamura E, Noda S. Capacitive deionization characteristics of compressed granular activated carbon[J]. Separation and Purification Technology,2021,277:119454.
    [11]
    Qiang H, Shi M, Wang F, et al. Green synthesis of high N-doped hierarchical porous carbon nanogranules with ultra-high specific surface area and porosity for capacitive deionization[J]. Separation and Purification Technology,2023,308:122918. doi: 10.1016/j.seppur.2022.122918
    [12]
    Liu M, Xu M, Xue Y, et al. efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes[J]. ACS Applied Materials & Interfaces,2018,10(37):31260-31270.
    [13]
    Zheng S M, Yuan Z H, Dionysiou D D, et al. Silkworm cocoon waste-derived nitrogen-doped hierarchical porous carbon as robust electrode materials for efficient capacitive desalination[J]. Chemical Engineering Journal,2023,458:141471. doi: 10.1016/j.cej.2023.141471
    [14]
    Zhao C, Wang Q, Chang S, et al. Efficient transport system of cultivated mushroom mycelium enables its derived carbon with high performance electrochemical desalination capability[J]. Carbon,2022,196:699-707. doi: 10.1016/j.carbon.2022.05.020
    [15]
    Stephanie H, Mlsna T E, Wipf D O. Functionalized biochar electrodes for asymmetrical capacitive deionization[J]. Desalination,2021,516:115240.
    [16]
    Song X, Fang D, Huo S, et al. 3D-ordered honeycomb-like nitrogen-doped micro–mesoporous carbon for brackish water desalination using capacitive deionization[J]. Environmental Science: Nano,2021,8(8):2191-2203. doi: 10.1039/D1EN00276G
    [17]
    Guo J, Xu X, Hill J P, et al. Graphene–carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization[J]. Chemical Science,2021,12(30):10334-10340. doi: 10.1039/D1SC00915J
    [18]
    Halabaso E R, Salvacion J W L, Kuncoro E P, et al. Highly efficient capacitive deionization of brackish water with manganese vanadate nanorod decorated reduced graphene oxide electrode[J]. Environmental Science:Nano,2021,8(10):2844-2854. doi: 10.1039/D1EN00514F
    [19]
    Song X, Fang D, Huo S, et al. Exceptional capacitive deionization desalination performance of hollow bowl-like carbon derived from MOFs in brackish water[J]. Separation and Purification Technology,2021,278:119550. doi: 10.1016/j.seppur.2021.119550
    [20]
    Kyaw H H, Myint M T Z, Al-Harthi S, et al. Electric field enhanced in situ silica nanoparticles grafted activated carbon cloth electrodes for capacitive deionization[J]. Separation and Purification Technology,2022,281:119888. doi: 10.1016/j.seppur.2021.119888
    [21]
    Zong M, Huo S, Liu Y, et al. Hydrangea-like nitrogen-doped porous carbons derived from NH2-MIL-53(Al) for high-performance capacitive deionization[J]. Separation and Purification Technology,2021,256:117818. doi: 10.1016/j.seppur.2020.117818
    [22]
    Hu B, Shang X, Nie P, et al. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization[J]. Journal of Colloid and Interface Science,2022,612:392-400. doi: 10.1016/j.jcis.2021.12.181
    [23]
    Bai Y, Huang Z H, Yu X L, et al. Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,444:153-158.
    [24]
    Wang G, Dong Q, Wu T, et al. Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: Importance and unique role of electrical conductivity[J]. Carbon,2016,103:311-317. doi: 10.1016/j.carbon.2016.03.025
    [25]
    Liu Y, Du X, Wang Z, et al. Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization[J]. Journal of Colloid and Interface Science,2022,609:289-296. doi: 10.1016/j.jcis.2021.12.001
    [26]
    Chen C, Men L, Liu A, et al. Enhanced electrochemical and capacitive deionization performances of single-layer graphene oxide/nitrogen-doped porous carbon/activated carbon fiber composite electrodes[J]. Journal of Environmental Chemical Engineering,2022,10(6):108696. doi: 10.1016/j.jece.2022.108696
    [27]
    Nie P, Wang S, Shang X, et al. Self-supporting porous carbon nanofibers with opposite surface charges for high-performance inverted capacitive deionization[J]. Desalination,2021,520:115340. doi: 10.1016/j.desal.2021.115340
    [28]
    Hameed R M A, Zouli N, Abutaleb A, et al. Improving water desalination performance of electrospun carbon nanofibers by supporting with binary metallic carbide nanoparticles[J]. Ceramics International,2022,48(4):4741-4753. doi: 10.1016/j.ceramint.2021.11.010
    [29]
    Wang P, Ma W, Xue S, et al. N-doped carbon nanosheets assembled microspheres for more effective capacitive deionization[J]. Separation and Purification Technology,2021,276:119336. doi: 10.1016/j.seppur.2021.119336
    [30]
    Gong X, Luo W, Guo N, et al. Carbon nanofiber@ZIF-8 derived carbon nanosheet composites with a core–shell structure boosting capacitive deionization performance[J]. Journal of Materials Chemistry A,2021,9(34):18604-18613. doi: 10.1039/D1TA03804D
    [31]
    Talebi M, Ahadian M M, Shahrokhian S. Binder-free 3D graphene nanostructures on Ni foam substrate for application in capacitive deionization[J]. Diamond and Related Materials,2021,120:108612.
    [32]
    Zhang G, Li W, Chen Z, et al. Freestanding N-doped graphene membrane electrode with interconnected porous architecture for efficient capacitive deionization[J]. Carbon,2022,187:86-96. doi: 10.1016/j.carbon.2021.10.081
    [33]
    Zhang H, Wang C, Zhang W, et al. Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization[J]. Journal of Materials Chemistry A,2021,9(21):12807-12817. doi: 10.1039/D0TA10797B
    [34]
    Lee J H, Bae W S, Choi J H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process[J]. Desalination,2010,258(1):159-163.
    [35]
    Choi J-H. Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization[J]. Desalination,2014,347:224-229.
    [36]
    Bouhadana Y, Avraham E, Noked M, et al. Capacitive deionization of NaCl solutions at non-steady-state conditions: Inversion functionality of the carbon electrodes[J]. The Journal of Physical Chemistry C,2011,115(33):16567-16573. doi: 10.1021/jp2047486
    [37]
    Cohen I, Avraham E, Bouhadana Y, et al. Long term stability of capacitive de-ionization processes for water desalination: The challenge of positive electrodes corrosion[J]. Electrochimica Acta,2013,106:91-100. doi: 10.1016/j.electacta.2013.05.029
    [38]
    He D, Wong C E, Tang W, et al. Faradaic reactions in water desalination by batch-mode capacitive deionization[J]. Environmental Science & Technology Letters,2016,3(5):222-226.
    [39]
    Taha M M, Anwar S E, Ramadan M, et al. Controlled fabrication of mesoporous electrodes with unprecedented stability for water capacitive deionization under harsh conditions in large size cells[J]. Desalination,2021,511:115099. doi: 10.1016/j.desal.2021.115099
    [40]
    Adorna J, Borines M, Dang V D, et al. Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization[J]. Desalination,2020,492:114602. doi: 10.1016/j.desal.2020.114602
    [41]
    Wang H, Edaño L, Valentino L, et al. Capacitive deionization using carbon derived from an array of zeolitic-imidazolate frameworks[J]. Nano Energy,2020,77:105304. doi: 10.1016/j.nanoen.2020.105304
    [42]
    Tang W, He D, Zhang C, et al. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes[J]. Water Research,2017,120:229-237. doi: 10.1016/j.watres.2017.05.009
    [43]
    Juchen P T, Barcelos K M, Oliveira K S G C, et al. Using crude residual glycerol as precursor of sustainable activated carbon electrodes for capacitive deionization desalination[J]. Chemical Engineering Journal,2022,429:132209. doi: 10.1016/j.cej.2021.132209
    [44]
    Son J W, Choi J H. Suppression of electrode reactions and enhancement of the desalination performance of capacitive deionization using a composite carbon electrode coated with an ion-exchange polymer[J]. Separation and Purification Technology,2021,278:119503.
    [45]
    Li H, Zou L. Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination[J]. Desalination,2011,275(1):62-66.
    [46]
    Biesheuvel P M, van der Wal A. Membrane capacitive deionization[J]. Journal of Membrane Science,2010,346(2):256-262.
    [47]
    Lee J B, Park K K, Eum H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination,2006,196(1):125-134.
    [48]
    Porada S, Sales B B, Hamelers H V M, et al. Water desalination with wires[J]. The Journal of Physical Chemistry Letters,2012,3(12):1613-1618. doi: 10.1021/jz3005514
    [49]
    Suss M E, Baumann T F, Bourcier W L, et al. Capacitive desalination with flow-through electrodes[J]. Energy & Environmental Science,2012,5(11):9511-9519.
    [50]
    Baumann T F, Worsley M A, Han T Y J, et al. High surface area carbon aerogel monoliths with hierarchical porosity[J]. Journal of Non-Crystalline Solids,2008,354(29):3513-3515. doi: 10.1016/j.jnoncrysol.2008.03.006
    [51]
    Wang G, Qian B, Wang Y, et al. Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization[J]. New Journal of Chemistry,2016,40(4):3786-3792. doi: 10.1039/C5NJ02963E
    [52]
    Remillard E M, Shocron A N, Rahill J, et al. A direct comparison of flow-by and flow-through capacitive deionization[J]. Desalination,2018,444:169-177. doi: 10.1016/j.desal.2018.01.018
    [53]
    Zhang C, He D, Ma J, et al. Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems[J]. Electrochimica Acta,2019,299:727-735. doi: 10.1016/j.electacta.2019.01.058
    [54]
    Zhang X, Dutta J. X-Fe (X = Mn, Co, Cu) Prussian blue analogue-modified carbon cloth electrodes for capacitive deionization[J]. ACS Applied Energy Materials,2021,4(8):8275-8284.
    [55]
    Reale E R, Regenwetter L, Agrawal A, et al. Low porosity, high areal-capacity prussian blue analogue electrodes enhance salt removal and thermodynamic efficiency in symmetric Faradaic deionization with automated fluid control[J]. Water Research X,2021,13:100116. doi: 10.1016/j.wroa.2021.100116
    [56]
    Shi M, Qiang H, Chen C, et al. Construction and evaluation of a novel three-electrode capacitive deionization system with high desalination performance[J]. Separation and Purification Technology,2021,273:118976. doi: 10.1016/j.seppur.2021.118976
    [57]
    Laxman K, Myint M T Z, Al Abri M, et al. Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes[J]. Desalination,2015,362:126-132. doi: 10.1016/j.desal.2015.02.010
    [58]
    Jeon S I, Park H R, Yeo J G, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science,2013,6(5):1471-1475.
    [59]
    Jeon S i, Yeo J g, Yang S, et al. Ion storage and energy recovery of a flow-electrode capacitive deionization process[J]. Journal of Materials Chemistry A,2014,2(18):6378-6383. doi: 10.1039/c4ta00377b
    [60]
    He C, Ma J, Zhang C, et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology,2018,52(16):9350-9360.
    [61]
    Ma J, Ma J, Zhang C, et al. Water recovery rate in short-circuited closed-cycle operation of flow-electrode capacitive deionization (FCDI)[J]. Environmental Science & Technology,2019,53(23):13859-13867.
    [62]
    Yang S, Choi J, Yeo J G, et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology,2016,50(11):5892-5899.
    [63]
    Yang S, Kim H, Jeon S I, et al. Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation[J]. Desalination,2017,424:110-121. doi: 10.1016/j.desal.2017.09.032
    [64]
    Ma J, Liang P, Sun X, et al. Energy recovery from the flow-electrode capacitive deionization[J]. Journal of Power Sources,2019,421:50-55. doi: 10.1016/j.jpowsour.2019.02.082
    [65]
    Doornbusch G J, Dykstra J E, Biesheuvel P M, et al. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization[J]. Journal of Materials Chemistry A,2016,4(10):3642-3647. doi: 10.1039/C5TA10316A
    [66]
    Xu L, Mao Y, Zong Y, et al. Membrane-current collector-based flow-electrode capacitive deionization system: A novel stack configuration for scale-up desalination[J]. Environmental Science & Technology,2021,55(19):13286-13296.
    [67]
    Xu L, Ding R, Mao Y, et al. Selective recovery of phosphorus and urea from fresh human urine using a liquid membrane chamber integrated flow-electrode electrochemical system[J]. Water Research,2021,202:117423. doi: 10.1016/j.watres.2021.117423
    [68]
    Gao X, Omosebi A, Landon J, et al. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior[J]. Energy & Environmental Science,2015,8(3):897-909.
    [69]
    Lee J Y, Seo S J, Yun S H, et al. Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI)[J]. Water Research,2011,45(17):5375-5380. doi: 10.1016/j.watres.2011.06.028
    [70]
    Lee J, Jo K, Lee J, et al. Rocking-chair capacitive deionization for continuous brackish water desalination[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10815-10822.
    [71]
    Lee J, Kim S, Kim C, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy & Environmental Science,2014,7(11):3683-3689.
    [72]
    Smith K C, Dmello R. Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric na-intercalation: Porous-electrode modeling[J]. Journal of the Electrochemical Society,2016,163(3):A530.
    [73]
    Kim N, Jeon J, Elbert J, et al. Redox-mediated electrochemical desalination for waste valorization in dairy production[J]. Chemical Engineering Journal,2022,428:131082. doi: 10.1016/j.cej.2021.131082
    [74]
    Ahn D, Kim D, Park J H, et al. Enhanced desalination performance of nitrogen-doped porous carbon electrode in redox-mediated deionization[J]. Desalination,2021,520:115333. doi: 10.1016/j.desal.2021.115333
    [75]
    Brogioli D. Extracting renewable energy from a salinity difference using a capacitor[J]. Physical Review Letters,2009,103(5):058501.
    [76]
    La Mantia F, Pasta M, Deshazer H D, et al. Batteries for efficient energy extraction from a water salinity difference[J]. Nano Letters,2011,11(4):1810-1813. doi: 10.1021/nl200500s
    [77]
    Pasta M, Wessells C D, Cui Y, et al. A desalination battery[J]. Nano Letters,2012,12(2):839-843. doi: 10.1021/nl203889e
    [78]
    Pasta M, Battistel A, La Mantia F. Batteries for lithium recovery from brines[J]. Energy & Environmental Science,2012,5(11):9487-9491.
    [79]
    Lee J, Yu S-H, Kim C, et al. Highly selective lithium recovery from brine using a λ-MnO2–Ag battery[J]. Physical Chemistry Chemical Physics,2013,15(20):7690-7695. doi: 10.1039/c3cp50919b
    [80]
    Kim T, Rahimi M, Logan B E, et al. Harvesting energy from salinity differences using battery electrodes in a concentration flow cell[J]. Environmental Science & Technology,2016,50(17):9791-9797.
    [81]
    Kim T, Gorski C A, Logan B E. Low energy desalination using battery electrode deionization[J]. Environmental Science & Technology Letters,2017,4(10):444-449.
    [82]
    Sales B B, Saakes M, Post J W, et al. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell[J]. Environmental Science & Technology,2010,44(14):5661-5665.
    [83]
    Kim T, Yoon J. CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization[J]. RSC Advances,2015,5(2):1456-1461.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(39)  / Tables(7)

    Article Metrics

    Article Views(813) PDF Downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return