Volume 38 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Satendra Kumar, Manoj Goswami, Netrapal Singh, Uday Deshpande, Surender Kumar, N. Sathish. Flexible and lightweight graphene grown by rapid thermal processing chemical vapor deposition for thermal management in consumer electronics. New Carbon Mater., 2023, 38(3): 534-542. doi: 10.1016/S1872-5805(23)60737-1
Citation: Satendra Kumar, Manoj Goswami, Netrapal Singh, Uday Deshpande, Surender Kumar, N. Sathish. Flexible and lightweight graphene grown by rapid thermal processing chemical vapor deposition for thermal management in consumer electronics. New Carbon Mater., 2023, 38(3): 534-542. doi: 10.1016/S1872-5805(23)60737-1

Flexible and lightweight graphene grown by rapid thermal processing chemical vapor deposition for thermal management in consumer electronics

doi: 10.1016/S1872-5805(23)60737-1
More Information
  • Next-generation consumer electronics require excellent thermal management. Graphene is a good choice because its thermal conductivity is 13 times that of copper. Single-, bi- and few-layer graphene (SLG, BLG, FLG) with large sp2 domains were grown by rapid thermal processing chemical vapor deposition (RTP-CVD) from CH4 and H2 using Ar as the diluting gas. The quality of graphene was investigated by Raman spectroscopy and TEM. To demonstrate the heat dissipation capability of RTP-CVD-grown graphene, a 2 TB solid state drive was used and the temperature was measured by a FLIR thermal camera. Results indicate that high thermal conductivity graphene was prepared by diluting the precursor gas with Ar. SLG was prepared at a growth temperature of 1 000 °C and a time of 25 min. A transition from FLG to high-quality BLG was observed at low H2 concentrations. Using SLG, there was a 5 °C lower temperature rise than using a commercial copper heat dissipator. The heat dissipation ability of SLG was approximately 200 times that of commercial copper heat dissipators.
  • loading
  • [1]
    Kercher D S, Lee J B, Brand O, et al. Microjet cooling devices for thermal management of electronics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2003,26:359-366. doi: 10.1109/TCAPT.2003.815116
    [2]
    Molina-Jordá J M. Nano- and micro-/meso-scale engineered magnesium/diamond composites: Novel materials for emerging challenges in thermal management[J]. Acta Materialia,2015,96:101-110. doi: 10.1016/j.actamat.2015.06.003
    [3]
    Li H L, Wu X, Cheng K, et al. One-pot modified “grafting-welding” preparation of graphene/ polyimide carbon films for superior thermal management[J]. New Carbon Materials,2021,36:949-960. doi: 10.1016/S1872-5805(21)60076-8
    [4]
    Chen J, Domingue J C, Sears C L. Microbiota dysbiosis in select human cancers: Evidence of association and causality[J]. Seminars in Immunology,2017,32:25-34. doi: 10.1016/j.smim.2017.08.001
    [5]
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8:902-907. doi: 10.1021/nl0731872
    [6]
    Li H L, Xiao S N, Yu H L, et al. A review of graphene-based films for heat dissipation[J]. New Carbon Materials,2021,36:897-910. doi: 10.1016/S1872-5805(21)60092-6
    [7]
    Dong Z J, Sun B, Zhu H, et al. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Materials,2021,36:873-896. doi: 10.1016/S1872-5805(21)60090-2
    [8]
    Lindsay L, Broido D A, Mingo N. Flexural phonons and thermal transport in graphene[J]. Physical Review B,2010,82:2-7.
    [9]
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45:1558-1565. doi: 10.1016/j.carbon.2007.02.034
    [10]
    Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706-710. doi: 10.1038/nature07719
    [11]
    Seah C M, Chai S P, Mohamed A R. Mechanisms of graphene growth by chemical vapour deposition on transition metals[J]. Carbon,2014,70:1-21. doi: 10.1016/j.carbon.2013.12.073
    [12]
    Zhang L, Hou G, Zhai W, et al. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles[J]. Journal of Alloys and Compounds,2018,748:854-860. doi: 10.1016/j.jallcom.2018.03.237
    [13]
    Bin Kim C, Lee J, Cho J, et al. Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation[J]. Carbon,2018,139:386-392. doi: 10.1016/j.carbon.2018.07.008
    [14]
    Rho H, Jang Y S, Bae H, et al. Fanless, porous graphene-copper composite heat sink for micro devices[J]. Scientific Reports,2021,11:1-7. doi: 10.1038/s41598-020-79139-8
    [15]
    Deokar G, Avila J, Razado-Colambo I, et al. Towards high quality CVD graphene growth and transfer[J]. Carbon,2015,89:82-92. doi: 10.1016/j.carbon.2015.03.017
    [16]
    Papon R, Pierlot C, Sharma S, et al. Optimization of CVD parameters for graphene synthesis through design of experiments[J]. Physica Status Solidi (B):Basic Research,2017,254:1-7.
    [17]
    Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8:235-246. doi: 10.1038/nnano.2013.46
    [18]
    Wahab H S, Ali S, Abdul Hussein A, et al. Synthesis and Characterization of Graphene by Raman Spectroscopy[J]. Journal of Materials Sciences and Applications,2015,1:130-135.
    [19]
    Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communication,2007,143:47-57. doi: 10.1016/j.ssc.2007.03.052
    [20]
    Lin Y C, Lu C C, Yeh C H, et al. Graphene annealing: How clean can it be?[J]. Nano Letters,2012,12:414-419. doi: 10.1021/nl203733r
    [21]
    Vlassiouk I, Smirnov S. Graphene nucleation density on copper: fundamental role of background pressure[J]. The Journal of Physical Chemistry A,2013,117:18919-18926. doi: 10.1021/jp4047648
    [22]
    Riikonen S, Krasheninnikov A V, Halonen L, et al. The role of stable and mobile carbon adspecies in copper-promoted graphene growth[J]. The Journal of Physical Chemistry C,2012,116:5802-5809. doi: 10.1021/jp211818s
    [23]
    Muñoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chemical Vapor Deposition,2013,19:297-322. doi: 10.1002/cvde.201300051
    [24]
    Zhang X, Guo X, Sun X, et al. Roles of CuO and Cu2O in graphene growth on a copper substrate[J]. Applied Surface Science,2022,576:151812. doi: 10.1016/j.apsusc.2021.151812
    [25]
    Sahai A, Goswami N, Kaushik S D, et al. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization[J]. Applied Surface Science,2016,390:974-983. doi: 10.1016/j.apsusc.2016.09.005
    [26]
    Gan Z H, Yu G Q, Tay B K, et al. Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc[J]. Journal of Physics D:Applied Physics,2004,37:81-85. doi: 10.1088/0022-3727/37/1/013
  • Supporting Information2022-0087.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(255) PDF Downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return