Volume 38 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
ZHANG Li-li, LI Xin-lian, WANG Peng, WEI Xing-hai, JING De-qi, ZHANG Xing-hua, ZHANG Shou-chun. Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films. New Carbon Mater., 2023, 38(3): 566-575. doi: 10.1016/S1872-5805(23)60738-3
Citation: ZHANG Li-li, LI Xin-lian, WANG Peng, WEI Xing-hai, JING De-qi, ZHANG Xing-hua, ZHANG Shou-chun. Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films. New Carbon Mater., 2023, 38(3): 566-575. doi: 10.1016/S1872-5805(23)60738-3

Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films

doi: 10.1016/S1872-5805(23)60738-3
Funds:  This work was supported by the Key Research and Development Program of Shanxi Province (202003D111002), Major Science and Technology Project in Shanxi Province (202101040201003), and the Innovation Fund Project of Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences (SCJC-XCL-2022-12)
More Information
  • Author Bio:

    张丽丽,博士研究生. E-mail:zhanglili@sxicc.ac.cn

  • Corresponding author: ZHANG Shou-chun, Professor. E-mail: zschun@sxicc.ac.cn
  • Received Date: 2023-02-10
  • Accepted Date: 2023-04-06
  • Rev Recd Date: 2023-04-06
  • Available Online: 2023-04-13
  • Publish Date: 2023-06-01
  • Carbon fiber/epoxy (CF/EP) composites are widely used in the aerospace industry, but their interlaminar properties and out-of-plane thermal conductivity are poor because of the lack of CF reinforcement in the interlaminar area. We prepared carbon nanotube/polyimide (CNT/PI) composite films and used them to improve the interlaminar fracture toughness (ILFT) and thermal conductivity of laminates of CF/EP and CNT/PI. Interleaving CNT/PI films with unidirectional CF/EP prepregs increased the mode I (the pre-cracked laminate failure is governed by peel forces) and mode II (the crack is propagated by shear stresses) ILFT of CF/EP laminates by 260% and 220%, respectively, which is attributed to the reinforcement effect of the CNTs and the plastic deformation of PI film. In addition, the out-of-plane thermal conductivity of the laminates is improved by introducing CNT/PI films because of their intrinsic high thermal conductivity and the continuous conductive network of CNTs. This toughening method provides an effective strategy for improving the thermal conductivity and mechanical properties of CF/EP laminates simultaneously.
  • loading
  • [1]
    Shrivastava R, Singh K K. Interlaminar fracture toughness characterization of laminated composites: A review[J]. Polymer Reviews,2020,60(3):542-93. doi: 10.1080/15583724.2019.1677708
    [2]
    Zeng N, Liu H Y, Gao J F, et al. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves[J]. Composites Part B: Engineering,2019,171:320-328. doi: 10.1016/j.compositesb.2019.05.004
    [3]
    Kim J K, Mai Y W. High strength, high fracture toughness fibre composites with interface control—A review[J]. Composites Science and Technology,1991,41(4):333-378.
    [4]
    Zhang J, Lin T, Wang X G. Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness[J]. Composites Science and Technology,2010,70(11):1660-1666. doi: 10.1016/j.compscitech.2010.06.019
    [5]
    Cai S M, Li Y, Liu H Y, et al. Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites[J]. Composites Science and Technology,2019,181:107673. doi: 10.1016/j.compscitech.2019.05.030
    [6]
    Wang M R, Kang Q J, Pan N. Thermal conductivity enhancement of carbon fiber composites[J]. Applied Thermal Engineering,2009,29(2):418-421.
    [7]
    Kumar V, Lin W H, Wang Y Q, et al. Enhanced through-thickness electrical conductivity and lightning strike damage response of interleaved vertically aligned short carbon fiber composites[J]. Composites Part B:Engineering,2023,253:110535. doi: 10.1016/j.compositesb.2023.110535
    [8]
    Li M H, Ali Z, Wei X Z, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B: Engineering,2021,208:108599. doi: 10.1016/j.compositesb.2020.108599
    [9]
    Lee E, Son I, Lee J H. Starfish surface-inspired graphene-copper metaparticles for ultrahigh vertical thermal conductivity of carbon fiber composite[J]. Composites Science and Technology,2020,199:108385. doi: 10.1016/j.compscitech.2020.108385
    [10]
    Rodríguez-González J A, Rubio-González C, Meneses-Nochebuena C A, et al. Enhanced interlaminar fracture toughness of unidirectional carbon fiber/epoxy composites modified with sprayed multi-walled carbon nanotubes[J]. Composite Interfaces,2017,24(9):883-896. doi: 10.1080/09276440.2017.1302279
    [11]
    Chen J H, Lekawa-raus A, Trevarthen J, et al. Carbon nanotube films spun from a gas phase reactor for manufacturing carbon nanotube film/carbon fibre epoxy hybrid composites for electrical applications[J]. Carbon,2020,158:282-290. doi: 10.1016/j.carbon.2019.08.078
    [12]
    Wang F Z, Cai X X. Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers[J]. Journal of Materials Science,2019,54(5):3847-3862. doi: 10.1007/s10853-018-3097-3
    [13]
    Guo M C, Yi X S. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes[J]. Carbon,2013,58:241-244. doi: 10.1016/j.carbon.2013.02.052
    [14]
    Kim M G, Moon J B. Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature[J]. Composites Part A:Applied Science and Manufacturing,2012,43(9):1620-1627. doi: 10.1016/j.compositesa.2012.04.001
    [15]
    Xiao C F, Tan Y F, Wang X L, et al. Study on interfacial and mechanical improvement of carbon fiber/epoxy composites by depositing multi-walled carbon nanotubes on fibers[J]. Chemical Physics Letters,2018,703:8-16. doi: 10.1016/j.cplett.2018.05.012
    [16]
    Ei M A, Tarfaoui M, Lafdi K, et al. Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact[J]. Composites Part B:Engineering,2017,125:1-8. doi: 10.1016/j.compositesb.2017.05.065
    [17]
    Bilisik K, Syduzzaman M. Carbon nanotubes in carbon/epoxy multiscale textile preform composites: A review[J]. Polymer Composites,2021,42(4):1670-1697. doi: 10.1002/pc.25955
    [18]
    Coleman J N, Khan U, Blan W J, et al. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon,2006,44(9):1624-1652. doi: 10.1016/j.carbon.2006.02.038
    [19]
    De Volder M F. L, Tawfick S H, Baughman R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453
    [20]
    Quan D, Urdaniz J L, Ivankovic A. Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes[J]. Materials & Design,2018,143:81-92.
    [21]
    Prasad N, Tola C, Coulaud M, et al. Carbon fiber composites based on multi-phase epoxy/pes matrices with carbon nanotubes: morphology and interlaminar fracture toughness characterization[J].  Advanced Engineering Materials,2016,18(12):2040-2046. doi: 10.1002/adem.201600153
    [22]
    Yao Z Q, Wang C G, Wang Y X, et al. Effect of CNTs deposition on carbon fiber followed by amination on the interfacial properties of epoxy composites[J]. Composite Structures,2022,292:115665. doi: 10.1016/j.compstruct.2022.115665
    [23]
    Li Z Y, Wang Y, Cao J C, et al. Effects of loading rates on mode I interlaminar fracture toughness of carbon/epoxy composite toughened by carbon nanotube films[J]. Composites Part B: Engineering,2020,200:108270. doi: 10.1016/j.compositesb.2020.108270
    [24]
    Khan S U, Kim J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon,2012,50(14):5265-5277. doi: 10.1016/j.carbon.2012.07.011
    [25]
    Ou Y F, Gonzalez C, Vilatel J J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105477. doi: 10.1016/j.compositesa.2019.105477
    [26]
    Shin Y C, Lee W, Kim H S. Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites[J]. Composite Structures,2020,236:111808. doi: 10.1016/j.compstruct.2019.111808
    [27]
    Kaynan O, Atescan Y, Ozeen-yenigun E, et al. Mixed mode delamination in carbon nanotube/nanofiber interlayered composites[J]. Composites Part B:Engineering,2018,154:186-194. doi: 10.1016/j.compositesb.2018.07.032
    [28]
    Zhang L L, Zhang X H, Wei X H, et al. Hydroxyl-functionalized block co-polyimide enables simultaneously improved toughness and strength of tetrafunctional epoxy resin[J]. Composites Science and Technology,2022,230:109787. doi: 10.1016/j.compscitech.2022.109787
    [29]
    Zhu Y, Baskis C E, Adair J H. Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites[J]. Carbon,2012,50(3):1316-1331. doi: 10.1016/j.carbon.2011.11.001
    [30]
    Yan M J, Liu L S, Chen L, et al. Radiation resistance of carbon fiber-reinforced epoxy composites optimized synergistically by carbon nanotubes in interface area/matrix[J]. Composites Part B:Engineering,2019,172:447-457. doi: 10.1016/j.compositesb.2019.04.041
    [31]
    Zhang C, Ling Y Q, Zhang X Q, et al. Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field[J]. Composites Part A:Applied Science and Manufacturing,2022,163:107197. doi: 10.1016/j.compositesa.2022.107197
    [32]
    Van De W N, Reese M S, Taha M R, et al. Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites[J]. Composites Part A:Applied Science and Manufacturing,2019,119:38-47. doi: 10.1016/j.compositesa.2019.01.012
    [33]
    Koirala P, Van De W N, Lu H B, et al. Using ultra-thin interlaminar carbon nanotube sheets to enhance the mechanical and electrical properties of carbon fiber reinforced polymer composites[J]. Composites Part B:Engineering,2021,216:108842. doi: 10.1016/j.compositesb.2021.108842
    [34]
    Ravindranath P K, Roy S, Unnikrishnan V, et al. A multiscale model to study the enhancement in the compressive strength of multi-walled CNT sheet overwrapped carbon fiber composites[J]. Composite Structures,2019,219:170-178. doi: 10.1016/j.compstruct.2019.03.065
    [35]
    Fisher F T, Bradshaw R D, Brinson L C. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers[J]. Applied Physics Letters,2002,80(24):4647-4649. doi: 10.1063/1.1487900
    [36]
    Hussein S I, Abd-elnaiem A M, Asafa T B, et al. Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite[J]. Applied Physics A,2018,124(7):475. doi: 10.1007/s00339-018-1890-0
  • Supporting Information2023-0019.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(367) PDF Downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return