Volume 38 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
TAO Fang-yu, XIE Dan, DIAO Wan-yue, LIU Chang, SUN Hai-zhu, LI Wen-liang, ZHANG Jing-ping, WU Xing-long. Highly lithiophilic Ti3C2Tx-Mxene anchored on a flexible carbon foam scaffold as the basis for a dendrite-free lithium metal anode. New Carbon Mater., 2023, 38(4): 765-775. doi: 10.1016/S1872-5805(23)60739-5
Citation: TAO Fang-yu, XIE Dan, DIAO Wan-yue, LIU Chang, SUN Hai-zhu, LI Wen-liang, ZHANG Jing-ping, WU Xing-long. Highly lithiophilic Ti3C2Tx-Mxene anchored on a flexible carbon foam scaffold as the basis for a dendrite-free lithium metal anode. New Carbon Mater., 2023, 38(4): 765-775. doi: 10.1016/S1872-5805(23)60739-5

Highly lithiophilic Ti3C2Tx-Mxene anchored on a flexible carbon foam scaffold as the basis for a dendrite-free lithium metal anode

doi: 10.1016/S1872-5805(23)60739-5
Funds:  This work was supported by the financial support from the Natural Science Foundation of Jilin Province (20220508141RC), the 111 Project (B13013), the National Natural Science Foundation of China (21873018), the Education Department of Jilin Province (JJKH20221154KJ), Jilin Provincial Research Center of Advanced Energy Materials (Northeast Normal University)
More Information
  • We report the fabrication of a lithiophilic Ti3C2Tx MXene-modified carbon foam (Ti3C2Tx-MX@CF) for the production of highly-stable LMBs that regulates Li nucleation behavior and reduces the volume change of a lithium metal anode (LMA). The 3D CF skeleton with a high specific surface area not only reduces the local current density to avoiding concentrated polarization, but also provides enough space to absorb the volume expansion during cycling. The excellent lithiophilicity of Ti3C2Tx-MX produced by its abundant functional groups reduces the Li nucleation overpotential, guides uniform Li deposition without the formation of Li dendrites, and maintains a stable SEI on the anode surface. Consequently, a Li infiltrated Ti3C2Tx-MX@CF symmetrical cell has an excellent cycling stability for more than 2 400 h with a low overpotential of 9 mV at a current density of 4 mA cm−2 and has a capacity of 1 mA h cm−2. Furthermore, a Li- Ti3C2Tx-MX@CF||NCM111 full cell has a capacity of 129.6 mA h g−1 even after 330 cycles at 1 C, demonstrating the advantage of this method in constructing stable LMAs.
  • loading
  • [1]
    Zhang N, Du L, Zhang J, et al. Self-assembled tent-like nanocavities for space-confined stable lithium metal anode[J]. Advanced Functional Materials,2023,33(16):2210862. doi: 10.1002/adfm.202210862
    [2]
    Yang Z, Liu W, Chen Q, et al. Ultra-smooth and dense lithium deposition toward high-performance lithium metal batteries[J]. Advanced Materials,2023,35(15):2210130.
    [3]
    Zhu H Y, Dong S Y, Xiong J, et al. MOF derived cobalt-nickel bimetallic phosphide (CoNiP) modified separator to enhance the polysulfide adsorption-catalysis for superior lithium-sulfur batteries[J], Journal of Colloid & Interface Science, 2023, 641: 942-949.
    [4]
    Xu X, Li F, Zhang D, et al. Facile construction of CoSn/Co3Sn2@C nanocages as anode for superior lithium‐/sodium‐ion storage[J]. Carbon Neutralization,2023,2:54-62. doi: 10.1002/cnl2.40
    [5]
    Li Y, Li J, Xiao H, et al. A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries[J]. Advanced Functional Materials,2023,33(14):2213905. doi: 10.1002/adfm.202213905
    [6]
    Ye S, Chen X, Zhang R, et al. Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode[J]. Nano-Micro Letters,2022,14(1):187. doi: 10.1007/s40820-022-00932-3
    [7]
    Wang X, Huang R Q, Niu S Z, et al. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Materials,2021,36(4):711-728. doi: 10.1016/S1872-5805(21)60081-1
    [8]
    Zhang Y J, Wang H M, Liu X, et al. A dimensionally stable lithium alloy based composite electrode for lithium metal batteries[J]. Chemical Engineering Journal,2022,450:138074. doi: 10.1016/j.cej.2022.138074
    [9]
    Kong Z k, Chen Y, Hua J z, et al. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides for advanced lithium-sulfur batteries[J]. New Carbon Materials,2021,36(4):810-820. doi: 10.1016/S1872-5805(21)60080-X
    [10]
    Zhan Y X, Shi P, Jin C B, et al. Regulating the two-stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes[J]. Advanced Functional Materials,2022,32:2206834. doi: 10.1002/adfm.202206834
    [11]
    Qiao L, Oteo U, Martinez-Ibanez M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries[J]. Nature Materials,2022,21:455-462. doi: 10.1038/s41563-021-01190-1
    [12]
    Yu Z, Rudnicki P E, Zhang Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy,2022,7(1):94-106. doi: 10.1038/s41560-021-00962-y
    [13]
    Chen D, Liu Y, Xia C, et al. Polybenzimidazole functionalized electrolyte with Li‐wetting and self‐fluorination functionalities for practical Li metal batteries[J]. InfoMat,2021,4(5):e12247.
    [14]
    Sun S, Myeong S, Kim J, et al. Design of inorganic/organic bi-layered Li protection layer enabled dendrite-free practical Li metal battery[J]. Chemical Engineering Journal,2022,450:137993. doi: 10.1016/j.cej.2022.137993
    [15]
    Zhao J, Hong M, Ju Z, et al. Durable lithium metal anodes enabled by interfacial layers based on mechanically interlocked networks capable of energy dissipation[J]. Angewandte Chemie International Edition,2022,61:e202214386.
    [16]
    Yao M, Ruan Q, Wang Y, et al. A robust dual-polymer@inorganic networks composite polymer electrolyte toward ultra-long-life and high-voltage Li/Li-rich metal battery[J]. Advanced Functional Materials,2023,33(18):2213702. doi: 10.1002/adfm.202213702
    [17]
    Li Z, Yu R, Weng S, et al. Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries[J]. Nature Communications,2023,14:482. doi: 10.1038/s41467-023-35857-x
    [18]
    Yang T Q, Wang C, Zhang W K, et al. Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0. 33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery[J]. Rare Metals,2022,41(6):1870-1879. doi: 10.1007/s12598-021-01891-1
    [19]
    Abdul Ahad S, Bhattacharya S, Kilian S, et al. Lithiophilic nanowire guided Li deposition in Li metal batteries[J]. Small,2023,19:2205142. doi: 10.1002/smll.202205142
    [20]
    Zhang S, Yang G, Li X, et al. Electrolyte and current collector designs for stable lithium metal anodes[J]. International Journal of Minerals, Metallurgy and Materials,2022,29(5):953-964. doi: 10.1007/s12613-022-2442-3
    [21]
    Bao J, Pei H J, Yue X Y, et al. In situ formed synaptic Zn@LiZn host derived from ZnO nanofiber decorated Zn foam for dendrite-free lithium metal anode[J]. Nano Research, 2023, DOI: 10.1007/s12274-022-5089-5.
    [22]
    Chen L, Chen G, Wen Z, et al. Electroplating CuO nanoneedle arrays on Ni foam as superior 3D scaffold for dendrite-free and stable Li metal anode[J]. Applied Surface Science,2022,599:153955. doi: 10.1016/j.apsusc.2022.153955
    [23]
    Chen W, Li S, Wang C, et al. Targeted deposition in a lithiophilic silver-modified 3D Cu host for lithium-metal anodes[J]. Energy & Environmental Materials, 2023. DOI: 10.1002/eem2.12412.
    [24]
    Li L X, Li Y N, Cao F F, et al. Lithiophilic interface guided transient infiltration of molten lithium for stable 3D composite lithium anodes[J]. Nano Research,2023,16:8297-8303. doi: 10.1007/s12274-022-4981-3
    [25]
    Gao Y, Cui B F, Wang J J, et al. Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene[J]. Rare Metals,2022,41(10):3391-3400. doi: 10.1007/s12598-022-02044-8
    [26]
    Zhang W, Fan Q, Zhang D, et al. Dynamic charge modulate lithium uniform plating functional composite anode for dendrite-free lithium metal batteries[J]. Nano Energy,2022,102:107677. doi: 10.1016/j.nanoen.2022.107677
    [27]
    Zhang J, He R, Zhuang Q, et al. Tuning 4f-center electron structure by schottky defects for catalyzing Li diffusion to achieve long-term dendrite-free lithium metal battery[J]. Advanced Science,2022,9:2202244. doi: 10.1002/advs.202202244
    [28]
    Yang Y, Cao J, Li W, et al. Ultrahigh-capacity and dendrite-free lithium metal anodes enabled by lithiophilic bimetallic oxides[J]. Journal of Materials Chemistry A,2022,10(44):23896-23904. doi: 10.1039/D2TA06841A
    [29]
    Zheng C, Yao Y, Rui X, et al. Functional MXene-based materials for next-generation rechargeable batteries[J]. Advanced Materials,2022,34:2204988. doi: 10.1002/adma.202204988
    [30]
    Zhao F, Zhai P, Wei Y, et al. Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes[J]. Advanced Science,2022,9(6):2103930. doi: 10.1002/advs.202103930
    [31]
    Zhao Y, Li Q, Liu Z, et al. Stable electrochemical Li plating/stripping behavior by anchoring MXene layers on three-dimensional conductive skeletons[J]. ACS Applied Materials & Interfaces,2020,12(34):37967-37976.
    [32]
    Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes[J]. Advanced Functional Materials,2020,30(45):2004613. doi: 10.1002/adfm.202004613
    [33]
    Tan L, Wei C, Zhang Y, et al. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte[J]. Journal of Energy Chemistry,2022,69:221-230. doi: 10.1016/j.jechem.2022.01.024
    [34]
    Qian Y, Wei C, Tian Y, et al. Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode[J]. Chemical Engineering Journal,2021,421:129685. doi: 10.1016/j.cej.2021.129685
    [35]
    Liu Y, Sun C, Lu Y, et al. Lamellar-structured anodes based on lithiophilic gradient enable dendrite-free lithium metal batteries with high capacity loading and fast-charging capability[J]. Chemical Engineering Journal,2023,451:138570. doi: 10.1016/j.cej.2022.138570
    [36]
    Zhou S, Fu C, Chang Z, et al. Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries[J]. Energy Storage Materials,2022,47:482-490. doi: 10.1016/j.ensm.2022.02.033
    [37]
    Xie D, Li H H, Diao W Y, et al. Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode[J]. Energy Storage Materials,2021,36:504-513. doi: 10.1016/j.ensm.2021.01.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(331) PDF Downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return