Volume 38 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
YUE Jing-song, YUAN Fang-yu, QIU Han-xun, LI Ying, LI Jing, XUE Yu-hua, YANG Jun-he. A review of fluorescent carbon dots: synthesis, photoluminescence mechanism, solid-state photoluminescence and applications in white light-emitting diodes. New Carbon Mater., 2023, 38(3): 478-495. doi: 10.1016/S1872-5805(23)60742-5
Citation: YUE Jing-song, YUAN Fang-yu, QIU Han-xun, LI Ying, LI Jing, XUE Yu-hua, YANG Jun-he. A review of fluorescent carbon dots: synthesis, photoluminescence mechanism, solid-state photoluminescence and applications in white light-emitting diodes. New Carbon Mater., 2023, 38(3): 478-495. doi: 10.1016/S1872-5805(23)60742-5

A review of fluorescent carbon dots: synthesis, photoluminescence mechanism, solid-state photoluminescence and applications in white light-emitting diodes

doi: 10.1016/S1872-5805(23)60742-5
More Information
  • Author Bio:

    岳劲松,硕士研究生. E-mail:15515323965@163.com

  • Corresponding author: QIU Han-xun, Associate Professor. E-mail: hxqiu@usst.edu.cn
  • Received Date: 2023-03-20
  • Rev Recd Date: 2023-04-24
  • Available Online: 2023-05-15
  • Publish Date: 2023-06-01
  • Carbon nanomaterials with a size of less than 10 nm, fluorescent carbon dots (CDs), have been extensively investigated, due to their excellent fluorescence tunability, good biocompatibility, wide range of precursors and low cost. Moreover, their simple preparation and excellent performance provide for a wide range of applications in the fields of optical sensing, energy storage, biomedical imaging, and white light-emitting diodes (WLEDs). A large number of solid-state photoluminescent CDs have recently been developed and used in WLEDs. The synthesis strategies of CDs are briefly summarized and their photoluminescence mechanisms are reviewed as well as the recent progress for their use in WLEDs. Finally, prospects for solving the current problems and challenges of CDs for WLEDs are briefly presented and discussed.
  • loading
  • [1]
    Rad R R, Gualdrón‐Reyes A F, Masi S, et al. Tunable carbon-CsPbI3 quantum dots for white LEDs[J]. Advanced Optical Materials,2021,9(4):2001508. doi: 10.1002/adom.202001508
    [2]
    Zheng J, Xie Y, Wei Y, et al. An efficient synthesis and photoelectric properties of green carbon quantum dots with high fluorescent quantum yield[J]. Nanomaterials,2020,10(1):82. doi: 10.3390/nano10010082
    [3]
    Du Q, Zheng J, Wang J, et al. The synthesis of green fluorescent carbon dots for warm white LEDs[J]. RSC Advances,2018,8(35):19585-19595. doi: 10.1039/C8RA02226G
    [4]
    Li Y, Wang Y Q, Liu D, et al. Dual-emission ratiometric fluorescent probe based on lanthanide-functionalized carbon quantum dots for white light emission and chemical sensing[J]. ACS Omega,2021,6(22):14629-14638. doi: 10.1021/acsomega.1c01745
    [5]
    Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [6]
    Hu Q, Gao L, Rao S Q, et al. Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect[J]. Food Chemistry,2019,280:195-202. doi: 10.1016/j.foodchem.2018.12.050
    [7]
    Zhang J, Wang J, Fu J, et al. Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection[J]. Journal of Nanoparticle Research,2018,20:1-9. doi: 10.1007/s11051-017-4105-2
    [8]
    Alizadeh N, Salimi A, Hallaj R. A strategy for visual optical determination of glucose based on a smartphone device using fluorescent boron-doped carbon nanoparticles as a light-up probe[J]. Microchimica Acta,2020,187:1-10. doi: 10.1007/s00604-019-3921-8
    [9]
    Tomskaya A E, Prosvirin I P, Egorova M N, et al. Structural and optical properties of N-doped and B-doped carbon dots[J]. Journal of Structural Chemistry,2020,61:818-825. doi: 10.1134/S0022476620050194
    [10]
    Sun S, Guan Q, Liu Y, et al. Highly luminescence manganese doped carbon dots[J]. Chinese Chemical Letters,2019,30(5):1051-1054. doi: 10.1016/j.cclet.2019.01.014
    [11]
    Li S, Zhou S, Li Y, et al. Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy[J]. ACS Applied Materials & Interfaces,2017,9(27):22332-22341.
    [12]
    Zhu P, Li W, Zhang Y, et al. β-Cyclodextrin derived full-spectrum fluorescent carbon dots: The formation process investigation and biological applications [J]. Chinese Chemical Letters, 2023: 108239.
    [13]
    Yuan F, Li Y, Li X, et al. Nitrogen-rich D-π-A structural carbon quantum dots with a bright two-photon fluorescence for deep-tissue imaging[J]. ACS Applied Bio Materials,2018,1(3):853-858. doi: 10.1021/acsabm.8b00276
    [14]
    Liu W, Zhang R, Kang Y, et al. Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells[J]. New Carbon Materials,2019,34(4):390-402. doi: 10.1016/S1872-5805(19)30024-1
    [15]
    Quang N K, Hieu N N, Bao V V Q, et al. Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging[J]. New Carbon Materials,2022,37(3):595-602. doi: 10.1016/S1872-5805(22)60608-5
    [16]
    Yue G, Li S, Liu W, et al. Ratiometric fluorescence based on silver clusters and N, Fe doped carbon dots for determination of H2O2 and UA: N, Fe doped carbon dots as mimetic peroxidase[J]. Sensors and Actuators B:Chemical,2019,287:408-415. doi: 10.1016/j.snb.2019.02.060
    [17]
    Rao L, Tang Y, Li Z, et al. Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection[J]. Materials Science and Engineering: C,2017,81:213-223. doi: 10.1016/j.msec.2017.07.046
    [18]
    Liang Y, Xu L, Tang K, et al. Nitrogen-doped carbon dots used as an “on-off-on” fluorescent sensor for Fe3+ and glutathione detection[J]. Dyes and Pigments,2020,178:108358. doi: 10.1016/j.dyepig.2020.108358
    [19]
    Zhao K, Zheng X, Zhang H, et al. Multi-color fluorescent carbon dots with single wavelength excitation for white light-emitting diodes[J]. Journal of Alloys and Compounds,2019,793:613-619. doi: 10.1016/j.jallcom.2019.04.146
    [20]
    Hsiao P H, Kuo K Y, Chen Y, et al. Balance of photon management and charge collection from carbon-quantum-dot layers as self-powered broadband photodetectors[J]. Nanoscale Advances,2023,5(4):1086-1094. doi: 10.1039/D2NA00852A
    [21]
    Kar A, Dagar P, Kumar S, et al. Photoluminescence and lifetime studies of C-dot decorated CdS/ZnFe2O4 composite designed for photoelectrochemical applications[J]. Journal of Photochemistry and Photobiology A:Chemistry,2023,439:114612. doi: 10.1016/j.jphotochem.2023.114612
    [22]
    Zu F, Yan F, Bai Z, et al. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications[J]. Microchimica Acta,2017,184:1899-1914. doi: 10.1007/s00604-017-2318-9
    [23]
    Xue S, Li P, Sun L, et al. The formation process and mechanism of carbon dots prepared from aromatic compounds as precursors: a review [J]. Small, 2023, e2206180.
    [24]
    de Medeiros T V, Manioudakis J, Noun F, et al. Microwave-assisted synthesis of carbon dots and their applications[J]. Journal of Materials Chemistry C,2019,7(24):7175-7195. doi: 10.1039/C9TC01640F
    [25]
    Wang X, Feng Y, Dong P, et al. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application[J]. Frontiers in Chemistry,2019,7:671. doi: 10.3389/fchem.2019.00671
    [26]
    Zhang Y, Li K, Ren S, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu (II) detection[J]. ACS Sustainable Chemistry & Engineering,2019,7(11):9793-9799.
    [27]
    Dey S, Govindaraj A, Biswas K, et al. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples[J]. Chemical Physics Letters,2014,595:203-208.
    [28]
    Sun Y-P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128(24):7756-7757. doi: 10.1021/ja062677d
    [29]
    Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society,2007,129(37):11318-11319. doi: 10.1021/ja073527l
    [30]
    Yang S T, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. The Journal of Physical Chemistry C,2009,113(42):18110-18114. doi: 10.1021/jp9085969
    [31]
    Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. Journal of Materials Chemistry,2009,19(4):484-488. doi: 10.1039/B812943F
    [32]
    Borna S, Sabzi R E, Pirsa S. Synthesis of carbon quantum dots from apple juice and graphite: Investigation of fluorescence and structural properties and use as an electrochemical sensor for measuring Letrozole[J]. Journal of Materials Science:Materials in Electronics,2021,32:10866-10879. doi: 10.1007/s10854-021-05745-5
    [33]
    Lee Y S, Hu C C, Chiu T C. Electrochemical synthesis of fluorescent carbon dots for the selective detection of chlortetracycline[J]. Journal of Environmental Chemical Engineering,2022,10(3):107413. doi: 10.1016/j.jece.2022.107413
    [34]
    Ran Q, Wang X, Ling P, et al. A thermal-assisted electrochemical strategy to synthesize carbon dots with bimodal photoluminescence emission[J]. Carbon,2022,193:404-411. doi: 10.1016/j.carbon.2022.03.041
    [35]
    Liu M, Xu Y, Niu F, et al. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging[J]. Analyst,2016,141(9):2657-2664. doi: 10.1039/C5AN02231B
    [36]
    Liu H, Liu Z H, Zhang J Q, et al. Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction[J]. New Carbon Materials,2021,36(3):585-593. doi: 10.1016/S1872-5805(21)60043-4
    [37]
    Miao X, Qu D, Yang D, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Advanced Materials,2018,30(1):1704740. doi: 10.1002/adma.201704740
    [38]
    Yu R, Liang S, Ru Y, et al. A facile preparation of multicolor carbon dots[J]. Nanoscale Research Letters,2022,17(1):32. doi: 10.1186/s11671-022-03661-z
    [39]
    Zhao Y, Yu L, Deng Y, et al. A multi-color carbon quantum dots based on the coordinated effect of quantum size and surface defects with green synthesis [J]. Ceramics International, 2023.
    [40]
    Zhang R, Zhang L, Yu R, et al. Rapid and sensitive detection of methyl parathion in rice based on carbon quantum dots nano-fluorescence probe and inner filter effect[J]. Food Chemistry,2023,413:135679. doi: 10.1016/j.foodchem.2023.135679
    [41]
    Wang R, Li S, Huang H, et al. Preparation of carbon dots from PET waste by one-step hydrothermal method and its application in light blocking films and LEDs [J]. Journal of Fluorescence, 2023: 1-11.
    [42]
    Fang L Y, Zheng J T. Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure[J]. New Carbon Materials,2021,36(3):625-631. doi: 10.1016/S1872-5805(21)60031-8
    [43]
    Li L P, Ren X F, Bai P R, et al. Near-infrared emission carbon dots for bio-imaging applications[J]. New Carbon Materials,2021,36(3):632-638. doi: 10.1016/S1872-5805(21)60041-0
    [44]
    Yuan F, He P, Xi Z, et al. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays[J]. Nano Research,2019,12(7):1669-1674. doi: 10.1007/s12274-019-2420-x
    [45]
    Li Q, Wu X, Zhang X, et al. Green and rapid synthesis of biomass carbon dot-based fluorescence sensing for the sensitive determination of oxytetracycline[J]. Analytical Methods,2023,15(12):1569-1575. doi: 10.1039/D2AY02031A
    [46]
    Zheng J, Cao Z, Lei M, et al. Rapid preparation of N, B-codoped carbon quantum dot based films with strong two-photon absorption and optical limiting effect[J]. Journal of Materials Chemistry C,2023,11(9):3342-3353. doi: 10.1039/D2TC05106K
    [47]
    Liu H, He Z, Jiang L P, et al. Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications[J]. ACS Applied Materials & Interfaces,2015,7(8):4913-4920.
    [48]
    Zheng J, Wang Y, Zhang F, et al. Microwave-assisted hydrothermal synthesis of solid-state carbon dots with intensive emission for white light-emitting devices[J]. Journal of Materials Chemistry C,2017,5(32):8105-8111. doi: 10.1039/C7TC01701D
    [49]
    Qiu H, Yuan F, Wang Y, et al. Green-light-emitting carbon dots via eco-friendly route and their potential in ferric-ion detection and WLEDs[J]. Materials Advances,2022,3(19):7339-7347. doi: 10.1039/D2MA00520D
    [50]
    Liu R. Facile synthesis of magneto-fluorescent carbon dots by one-step microwave-assisted pyrolysis[J]. Journal of Alloys and Compounds,2021,855:157456. doi: 10.1016/j.jallcom.2020.157456
    [51]
    Ahlawat A, Dhiman T K, Solanki P R, et al. Facile synthesis of carbon dots via pyrolysis and their application in photocatalytic degradation of rhodamine B (RhB) [J]. Environmental Science and Pollution Research, 2023: 1-8.
    [52]
    Chen M, Zhai J, An Y, et al. Solvent-free pyrolysis strategy for the preparation of biomass carbon dots for the selective detection of Fe3+ ions [J]. Frontiers in Chemistry, 2022, 10.
    [53]
    Guo X, Wang C F, Yu Z Y, et al. Facile access to versatile fluorescent carbon dots toward light-emitting diodes[J]. Chemical Communications,2012,48(21):2692-2694. doi: 10.1039/c2cc17769b
    [54]
    Li Y, Li R, Zhu Z, et al. Electrochemiluminescence detection of Cu2+ ions by nitrogen-doped carbon quantum dots and zinc oxide composites[J]. Microchemical Journal,2022,183:108073. doi: 10.1016/j.microc.2022.108073
    [55]
    Cardoso M A, Duarte A J, Gonçalves H M R. Carbon dots as reactive nitrogen species nanosensors[J]. Analytica Chimica Acta,2022,1202:339654. doi: 10.1016/j.aca.2022.339654
    [56]
    Zhu S, Song Y, Zhao X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research,2015,8(2):355-381. doi: 10.1007/s12274-014-0644-3
    [57]
    Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide[J]. Advanced Materials,2010,22(4):505-509. doi: 10.1002/adma.200901996
    [58]
    Yuan F, Yuan T, Sui L, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Nature Communications,2018,9(1):2249. doi: 10.1038/s41467-018-04635-5
    [59]
    Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano,2016,10(1):484-491. doi: 10.1021/acsnano.5b05406
    [60]
    Wang M, Sun R, Wang Q, et al. Effects of C-related dangling bonds and functional groups on the fluorescent and electrochemiluminescent properties of carbon-based dots[J]. Chemistry–A European Journal,2018,24(17):4250-4254. doi: 10.1002/chem.201706078
    [61]
    Ding Y, Zheng J, Wang J, et al. Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature[J]. Journal of Materials Chemistry C,2019,7(6):1502-1509. doi: 10.1039/C8TC04887H
    [62]
    Fang Q, Dong Y, Chen Y, et al. Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules[J]. Carbon,2017,118:319-326. doi: 10.1016/j.carbon.2017.03.061
    [63]
    Song Y, Zhu S, Zhang S, et al. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine[J]. Journal of Materials Chemistry C,2015,3(23):5976-5984. doi: 10.1039/C5TC00813A
    [64]
    Li F, Yang D, Xu H. Non-metal-heteroatom-doped carbon dots: Synthesis and properties[J]. Chemistry-A European Journal,2019,25(5):1165-1176. doi: 10.1002/chem.201802793
    [65]
    Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition,2013,52(14):3953-3957. doi: 10.1002/anie.201300519
    [66]
    Hu S, Trinchi A, Atkin P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angewandte Chemie International Edition,2015,54(10):2970-2974. doi: 10.1002/anie.201411004
    [67]
    Hola K, Sudolská M, Kalytchuk S, et al. Graphitic nitrogen triggers red fluorescence in carbon dots[J]. ACS Nano,2017,11(12):12402-12410. doi: 10.1021/acsnano.7b06399
    [68]
    Wu Z L, Liu Z X, Yuan Y H. Carbon dots: Materials, synthesis, properties and approaches to long-wavelength and multicolor emission[J]. Journal of Materials Chemistry B,2017,5(21):3794-3809. doi: 10.1039/C7TB00363C
    [69]
    Xu A, Wang G, Li Y, et al. Carbon-based quantum dots with solid-state photoluminescent: Mechanism, implementation, and application[J]. Small,2020,16(48):2004621. doi: 10.1002/smll.202004621
    [70]
    Sun M, Qu S, Hao Z, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites[J]. Nanoscale,2014,6(21):13076-13081. doi: 10.1039/C4NR04034A
    [71]
    Yan Y, Yin L, Guo H, et al. High stability carbon dots phosphor and ultra-high color rendering index white light-emitting diodes[J]. IEEE Photonics Journal,2022,14(1):1-6.
    [72]
    Zheng J X, Liu X H, Yang Y Z, et al. Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes[J]. New Carbon Materials,2018,33(3):276-288. doi: 10.1016/S1872-5805(18)60339-7
    [73]
    Zheng X G, Wang H L, Ding G Q, et al. Facile synthesis of highly graphitized nitrogen-doped carbon dots and carbon sheets with solid-state white-light emission[J]. Materials Letters,2017,195:58-61. doi: 10.1016/j.matlet.2017.02.094
    [74]
    Feng X T, Zhang F, Wang Y L, et al. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes[J]. Applied Physics Letters,2015,107(21):213102. doi: 10.1063/1.4936234
    [75]
    Wang H, Zhang Z, Yan Q, et al. Highly luminescent solid-state carbon dots embedded in a boric acid matrix[J]. ChemistrySelect,2020,5(44):13969-13973. doi: 10.1002/slct.202004009
    [76]
    Wu J, Xin W, Wu Y, et al. Solid-state photoluminescent silicone-carbon dots/dendrimer composites for highly efficient luminescent solar concentrators[J]. Chemical Engineering Journal,2021,422:130158. doi: 10.1016/j.cej.2021.130158
    [77]
    Cao M, Xia C, Xia J, et al. A yellow carbon dots-based phosphor with high efficiency for white light-emitting devices[J]. Journal of Luminescence,2019,206:97-104. doi: 10.1016/j.jlumin.2018.10.056
    [78]
    Sun M, Han Y, Yuan X, et al. Efficient full-color emitting carbon-dot-based composite phosphors by chemical dispersion[J]. Nanoscale,2020,12(29):15823-15831. doi: 10.1039/D0NR02021D
    [79]
    Cao M, Liu Y, Zhu M, et al. A novel and highly stable dual-emission carbon dots-based phosphor[J]. Journal of Alloys and Compounds,2021,873:159819. doi: 10.1016/j.jallcom.2021.159819
    [80]
    Lee U, Heo E, Le T H, et al. Carbon dots for epoxy curing: Anti-forgery patterns with long-term luminescent stability[J]. Chemical Engineering Journal,2021,405:126988. doi: 10.1016/j.cej.2020.126988
    [81]
    Barman B K, Sele Handegård Ø, Hashimoto A, et al. Carbon dot/cellulose-based transparent films for efficient UV and high-energy blue light screening[J]. ACS Sustainable Chemistry & Engineering,2021,9(29):9879-9890.
    [82]
    Mou C, Wang X, Liu Y, et al. A robust carbon dot-based antibacterial CDs-PVA film as a wound dressing for antibiosis and wound healing[J]. Journal of Materials Chemistry B,2023,11(9):1940-1947. doi: 10.1039/D2TB02582E
    [83]
    Kumari R, Kumar A, Negi K, et al. Multicolor-emissive carbon dots for white-light-emitting diodes and room-temperature phosphorescence[J]. ACS Applied Nano Materials,2023,6(2):918-929. doi: 10.1021/acsanm.2c04312
    [84]
    Ai L, Yang Y, Wang B, et al. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives[J]. Science Bulletin,2021,66(8):839-856. doi: 10.1016/j.scib.2020.12.015
    [85]
    Li H, Zhang Z, Ding J, et al. Diamond-like carbon structure-doped carbon dots: a new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes[J]. Carbon,2019,149:342-349. doi: 10.1016/j.carbon.2019.04.074
    [86]
    Zhou D, Jing P, Wang Y, et al. Carbon dots produced via space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states[J]. Nanoscale Horizons,2019,4(2):388-395. doi: 10.1039/C8NH00247A
    [87]
    Han S, Chen X, Hu Y, et al. Solid-state N, P-doped carbon dots conquer aggregation-caused fluorescence quenching and couple with europium metal-organic frameworks toward white light-emitting diodes[J]. Dyes and Pigments,2021,187:109090. doi: 10.1016/j.dyepig.2020.109090
    [88]
    Chen Y, Zheng M, Xiao Y, et al. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission[J]. Advanced Materials,2016,28(2):312-318. doi: 10.1002/adma.201503380
    [89]
    Zhou Z, Tian P, Liu X, et al. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted, aggregation-enhanced emission for light-emitting devices and visible light communication[J]. Advanced Science,2018,5(8):1800369. doi: 10.1002/advs.201800369
    [90]
    Tao Y, Lin J, Wang D, et al. Na+-functionalized carbon dots with aggregation-induced and enhanced cyan emission[J]. Journal of Colloid and Interface Science,2021,588:469-475. doi: 10.1016/j.jcis.2020.12.104
    [91]
    Fakharuddin A, Gangishetty M K, Abdi-Jalebi M, et al. Perovskite light-emitting diodes[J]. Nature Electronics,2022,5(4):203-216. doi: 10.1038/s41928-022-00745-7
    [92]
    Li C X, Yu C, Wang C F, et al. Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs[J]. Journal of Materials Science,2013,48(18):6307-6311. doi: 10.1007/s10853-013-7430-6
    [93]
    Sun C, Zhang Y, Sun K, et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes[J]. Nanoscale,2015,7(28):12045-12050. doi: 10.1039/C5NR03014E
    [94]
    Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie,2015,127(18):5450-5453. doi: 10.1002/ange.201501193
    [95]
    Wang Z, Yuan F, Li X, et al. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes[J]. Advanced Materials,2017,29(37):1702910. doi: 10.1002/adma.201702910
    [96]
    Zhai Y, Wang Y, Li D, et al. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92[J]. Journal of Colloid and Interface Science,2018,528:281-288. doi: 10.1016/j.jcis.2018.05.101
    [97]
    Chen X, Wu W, Zhang W, et al. Blue and green double band luminescent carbon quantum dots: Synthesis, origin of photoluminescence, and application in white light-emitting devices[J]. Applied Physics Letters,2021,118(15):153102. doi: 10.1063/5.0046495
    [98]
    Sun Z, Yan F, Xu J, et al. Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices[J]. Nano Research,2021,15(1):414-422.
    [99]
    Perikala M, Bhardwaj A. Excellent color rendering index single system white light emitting carbon dots for next generation lighting devices[J]. Scientific Reports,2021,11(1):1-11. doi: 10.1038/s41598-020-79139-8
    [100]
    Wang B, Song H, Tang Z, et al. Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation[J]. Nano Research,2022,15(2):942-949. doi: 10.1007/s12274-021-3579-5
    [101]
    Feng X, Jiang K, Zeng H, et al. A facile approach to solid-state white emissive carbon dots and their application in UV-excitable and single-component-based white LEDs[J]. Nanomaterials,2019,9(5):725. doi: 10.3390/nano9050725
    [102]
    Li W, Wu M, Jiang H, et al. Carbon dots/ZnO quantum dots composite-based white phosphors for white light-emitting diodes[J]. Chemical Communications,2022,58(12):1910-1913. doi: 10.1039/D1CC06180A
    [103]
    Han Q, Xu W, Ji C, et al. Multicolor and single-component white light-emitting carbon dots from a single precursor for light-emitting diodes[J]. ACS Applied Nano Materials,2022,5(10):15914-15924. doi: 10.1021/acsanm.2c04130
    [104]
    Wang F, Chen Y, Liu C, et al. White light-emitting devices based on carbon dots’ electroluminescence[J]. Chemical Communications,2011,47(12):3502-3504. doi: 10.1039/c0cc05391k
    [105]
    Xu J, Miao Y, Zheng J, et al. Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness[J]. Nanoscale,2018,10(23):11211-11221. doi: 10.1039/C8NR01834K
    [106]
    Wang Z, Jiang N, Liu M, et al. Bright electroluminescent white-light-emitting diodes based on carbon dots with tunable correlated color temperature enabled by aggregation[J]. Small,2021,17(52):2104551. doi: 10.1002/smll.202104551
    [107]
    Zhou X, Yi K, Yang Y, et al. A novel method for the synthesis of carbon dots assisted by free radicals[J]. Nano Research,2022,15(10):9470-9478. doi: 10.1007/s12274-022-4567-0
    [108]
    Yan Z, Chen T, Yan L, et al. One-step synthesis of white-light-emitting carbon dots for white LEDs with a high color rendering index of 97 [J]. Advanced Science, 2023: 2206386.
    [109]
    Zhao B, Tan Z. Fluorescent carbon dots: Fantastic electroluminescent materials for light-emitting diodes[J]. Advanced Science,2021,8(7):2001977. doi: 10.1002/advs.202001977
    [110]
    Jia H, Wang Z, Yuan T, et al. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots[J]. Advanced Science,2019,6(13):1900397. doi: 10.1002/advs.201900397
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article Views(517) PDF Downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return