Volume 38 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
KE Xian-lan, LU Yu-heng, WU Jin-lun, WU Ding-cai. Fabrication of vulcanized cross-linked polystyrene grafted on carbon nanotubes for use as an advanced lithium host. New Carbon Mater., 2023, 38(4): 743-753. doi: 10.1016/S1872-5805(23)60745-0
Citation: KE Xian-lan, LU Yu-heng, WU Jin-lun, WU Ding-cai. Fabrication of vulcanized cross-linked polystyrene grafted on carbon nanotubes for use as an advanced lithium host. New Carbon Mater., 2023, 38(4): 743-753. doi: 10.1016/S1872-5805(23)60745-0

Fabrication of vulcanized cross-linked polystyrene grafted on carbon nanotubes for use as an advanced lithium host

doi: 10.1016/S1872-5805(23)60745-0
More Information
  • Author Bio:

    柯贤澜,硕士生. E-mail:kexlan@mail2.sysu.edu.cn

  • Corresponding author: WU Jin-lun, Ph.D. E-mail: wujinlun@gdph.org.cn; WU Ding-cai, Ph.D, Professor. E-mail: wudc@mail.sysu.edu.cn
  • Received Date: 2023-03-22
  • Accepted Date: 2023-05-29
  • Rev Recd Date: 2023-05-29
  • Available Online: 2023-06-01
  • Publish Date: 2023-08-01
  • We report the fabrication of vulcanized cross-linked polystyrene grafted on carbon nanotubes (CNTs) for use as an advanced three-dimensional Li host. First, polystyrene was grafted from Br-modified CNTs to form brush-like structure by surface-initiated atom-transfer radical polymerization. Polystyrene grafted on carbon nanotubes was then cross-linked using a Friedel-Crafts reaction and finally vulcanized with sulfur. Vulcanized cross-linked polystyrene grafted on carbon nanotubes was used as a support for the Li metal, and its macro-, meso- and microporous structure increased Li ion transport, buffered the volume changes of the Li anode, and provided a high specific surface area to reduce local current density, which assisted rapid and uniform Li plating/stripping. At the same time, the homogenously distributed sulfur in the support reacted with Li to produce a Li2S-containing SEI layer, while the CNTs provided conductive pathways for the rapid transmission of electrons. As a result, a Li|Li symmetric cell using this anode material and a Cu current collector had a stable cycling performance of more than 500 h at a current density of 1 mA cm−2. When LiFePO4 was used as the cathode, a full cell had a high discharge capacity of 101 mAh g−1 with a capacity retention of 77% after 600 cycles at 1 C.
  • loading
  • [1]
    Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [2]
    Zhang X, Yang Y, Zhou Z. Towards practical lithium-metal anodes[J]. Chemical Society Review,2020,49(10):3040-3071. doi: 10.1039/C9CS00838A
    [3]
    Li S, Huang J, Cui Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nature Nanotechnology,2022,17(6):613-621. doi: 10.1038/s41565-022-01107-2
    [4]
    Chen X, Zhao B, Yan C, et al. Review on Li deposition in working batteries: from nucleation to early growth[J]. Advanced Materials,2021,33(8):e2004128. doi: 10.1002/adma.202004128
    [5]
    Li C, Liu S, Shi C, et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes[J]. Nature Communications,2019,10(1):1363. doi: 10.1038/s41467-019-09211-z
    [6]
    He X, Bresser D, Passerini S, et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries[J]. Nature Reviews Materials,2021,6(11):1036-1052. doi: 10.1038/s41578-021-00345-5
    [7]
    Liu Q, Liu R, Cui Y, et al. Dendrite-free and long-cycling lithium metal battery enabled by ultrathin, 2D shield-defensive, and single lithium-ion conducting polymeric membrane[J]. Advanced Materials,2022,34(33):e2108437. doi: 10.1002/adma.202108437
    [8]
    Li S, Zhang L, Liu T, et al. A dendrite-free lithium-metal anode enabled by designed ultrathin MgF2 nanosheets encapsulated inside nitrogen-doped graphene-like hollow nanospheres[J]. Advanced Materials,2022,34(24):e2201801. doi: 10.1002/adma.202201801
    [9]
    Fang Y, Zhang S, Wu Z, et al. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers[J]. Science Advances,2021,7(21):eabg3626. doi: 10.1126/sciadv.abg3626
    [10]
    Mei Y, Zhou J, Hao Y, et al. High-lithiophilicity host with micro/nanostructured active sites based on wenzel wetting model for dendrite‐free lithium metal anodes[J]. Advanced Functional Materials,2021,31(50):2106676. doi: 10.1002/adfm.202106676
    [11]
    Lu Z, Liu S, Li C, et al. 3D porous carbon networks with highly dispersed SiOx by molecular-scale engineering toward stable lithium metal anodes[J]. Chemical Communication,2019,55(43):6034-6037. doi: 10.1039/C9CC01927H
    [12]
    Chen C, Guan J, Li N, et al. Lotus-root-like carbon fibers embedded with Ni-Co nanoparticles for dendrite-free lithium metal anodes[J]. Advanced Materials,2021,33(24):e2100608. doi: 10.1002/adma.202100608
    [13]
    Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials,2019,31(2):e1805334. doi: 10.1002/adma.201805334
    [14]
    Wang J, Li L, Hu H, et al. Toward dendrite-free metallic lithium anodes: from structural design to optimal electrochemical diffusion kinetics[J]. ACS Nano,2022,16(11):17729-17760. doi: 10.1021/acsnano.2c08480
    [15]
    Fan L, Zhuang H, Zhang W, et al. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite Anode[J]. Advanced Energy Materials,2018,8(15):1703360. doi: 10.1002/aenm.201703360
    [16]
    Hu Z, Deng W, He B, et al. Self-adaptive 3D skeleton with charge dissipation capability for practical Li metal pouch cells[J]. Nano Energy, 2022, 93(106805).
    [17]
    Ma Y, Wei L, He Y, et al. A "blockchain" synergy in conductive polymer-filled metal-organic frameworks for dendrite-free Li plating/stripping with high coulombic efficiency[J]. Angewandte Chemie International Edition,2022,61(12):e202116291.
    [18]
    Yang Z, Liu W, Chen Q, et al. Ultrasmooth and dense lithium deposition toward high-performance lithium-metal batteries[J]. Advanced Materials, 2023: e2210130.
    [19]
    Liang Y, Chen L, Zhuang D, et al. Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes[J]. Chemical Science,2017,8(3):2101-2106. doi: 10.1039/C6SC03961H
    [20]
    Adams B, Zheng J, Ren X, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Advanced Energy Materials,2018,8(7):1702097. doi: 10.1002/aenm.201702097
    [21]
    Chen G, Liu S, Chen S, et al. FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposite[J]. Macromolecular Chemistry and Physics,2001,202(7):1189-1193. doi: 10.1002/1521-3935(20010401)202:7<1189::AID-MACP1189>3.0.CO;2-M
    [22]
    Li Z, Wu D, Liang Y, et al. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties[J]. Journal of the American Chemical Society,2014,136(13):4805-4808. doi: 10.1021/ja412192v
    [23]
    Wu J, Huang J, Cui Y, et al. Rough endoplasmic reticulum inspired polystyrene-brush-based superhigh sulfur content cathodes enable lithium-sulfur cells with high mass and capacity loading[J]. Advanced Materials, 2023: e2211471.
    [24]
    Wu P, Sun M, Yu Y, et al. Physical and chemical dual-confinement of polysulfides within hierarchically meso-microporous nitrogen-doped carbon nanocages for advanced Li–S batteries[J]. RSC Advances,2017,7(68):42627-42633. doi: 10.1039/C7RA07918D
    [25]
    Chua C & Pumera M. Monothiolation and reduction of graphene oxide via one-pot synthesis: Hybrid catalyst for oxygen reduction[J]. ACS Nano,2015,9(4):4193-4199. doi: 10.1021/acsnano.5b00438
    [26]
    Hu G, Sun Z, Shi C, et al. A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries[J]. Advanced Materials,2017,29(11):1603835. doi: 10.1002/adma.201603835
    [27]
    Munir A, Haq T, Qurashi A, et al. Ultrasmall Ni/NiO nanoclusters on thiol-functionalized and -exfoliated graphene oxide nanosheets for durable oxygen evolution reaction[J]. ACS Applied Energy Materials,2018,2(1):363-371.
    [28]
    Zhang T, Li J, Li X, et al. A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries[J]. Advanced Materials,2022,34(41):2205575. doi: 10.1002/adma.202205575
    [29]
    Liang J, Li X, Zhao Y, et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes[J]. Advanced Materials,2018,30(45):1804684. doi: 10.1002/adma.201804684
    [30]
    Wang W, Yang Z, Zhang Y, et al. Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework[J]. Energy Storage Materials, 2022, 46(374-383).
    [31]
    Tian M, Ben L, Yu H, et al. Designer cathode additive for stableinterphases on high-energy anodes[J]. Journal of the American Chemical Society,2022,144(33):15100-15110. doi: 10.1021/jacs.2c04124
  • Supporting Information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(365) PDF Downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return