Volume 38 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
XIN Xiao-yu, ZHAO Bin, YUE Jin-shu, KONG De-bin, ZHOU Shan-ke, HUANG Xiao-xiong, WANG Bin, ZHI Lin-jie, XIAO Zhi-chang. A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors. New Carbon Mater., 2023, 38(5): 898-912. doi: 10.1016/S1872-5805(23)60760-7
Citation: XIN Xiao-yu, ZHAO Bin, YUE Jin-shu, KONG De-bin, ZHOU Shan-ke, HUANG Xiao-xiong, WANG Bin, ZHI Lin-jie, XIAO Zhi-chang. A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors. New Carbon Mater., 2023, 38(5): 898-912. doi: 10.1016/S1872-5805(23)60760-7

A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors

doi: 10.1016/S1872-5805(23)60760-7
More Information
  • Author Bio:

    辛晓雨. E-mail:13180500262@163.com

  • Corresponding author: ZHI Lin-jie, Professor. E-mail: zhilj@nanoctr.cn; XIAO Zhi-chang, Professor. E-mail: xiaozhichangcnu@sina.cn
  • Received Date: 2023-03-06
  • Accepted Date: 2023-06-12
  • Rev Recd Date: 2023-06-08
  • Available Online: 2023-06-16
  • Publish Date: 2023-10-01
  • Two-dimensional (2D) carbon materials have attracted enormous attention, but the complicated synthesis methods, inhomogeneous structure and uncontrollable properties still limit their use. Here we report a universal protocol for fabricating a series of heteroatom-doped 2D porous polymers, including pyrrole and indole as nitrogen-dopant sources, and 3,4-ethoxylene dioxy thiophene as a sulfur-dopant source by a simple chemical crosslinking reaction. This bottom-up strategy allows for the large-scale synthesis of functionalized ultrathin carbon nanosheets with a high heteroatom doping content and abundant porosity. Consequently, the obtained N-doped carbon-rich nanosheets (NCNs) sample has a specific capacity of 573.4 mAh g−1 at 5 A g−1 as an anode for lithium-ion capacitors (LICs), and the optimized sample has a specific capacitance of 100.0 F g−1 at 5 A g−1 when used as a cathode for a LIC. A dual-carbon LIC device was also developed that had an energy density of 168.4 Wh kg−1 at 400 W kg−1, while maintaining outstanding cycling stability with a retention rate of 86.3% after 10 000 cycles. This approach has the potential to establish a way for the precise synthesis of substantial amounts of 2D functionalized carbon nanosheets with the desired structure and properties.
  • loading
  • [1]
    Kang J, Huang S, Jiang K, et al. 2D porous polymers with sp2-carbon connections and sole sp2-carbon skeletons[J]. Advanced Functional Materials,2020,30:2000857. doi: 10.1002/adfm.202000857
    [2]
    Choi S H, Yun S J, Won Y S, et al. Large-scale synthesis of graphene and other 2D materials towards industrialization[J]. Nature Communications,2022,13:1484. doi: 10.1038/s41467-022-29182-y
    [3]
    Yang L, Chen W, Yu Q, et al. Mass production of two-dimensional materials beyond graphene and their applications[J]. Nano Research,2020,14:1583-1597.
    [4]
    Zhang T, Zhang G, Chen L. 2D conjugated covalent organic frameworks: Defined synthesis and tailor-made functions[J]. Accounts of Chemical Research,2022,55:795-808. doi: 10.1021/acs.accounts.1c00693
    [5]
    Li S, Cheng C, Liang H W, et al. 2D porous carbons prepared from layered organic-inorganic hybrids and their use as oxygen-reduction electrocatalysts[J]. Advanced Materials,2017,29:1700707. doi: 10.1002/adma.201700707
    [6]
    Sun Z, Hu Y H. Ultrafast, low-cost, and mass production of high-quality graphene[J]. Angewandte Chemie International Edition,2020,59:9232-9234. doi: 10.1002/anie.202002256
    [7]
    Mou X, Xin X, Dong Y, et al. Molecular design of porous organic polymer-derived carbonaceous electrocatalysts for pinpointing active sites in oxygen reduction reaction[J]. Molecules,2023,28:4160. doi: 10.3390/molecules28104160
    [8]
    Yu M, Dong R, Feng X. Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications[J]. Journal of the American Chemical Society,2020,142:12903-12915. doi: 10.1021/jacs.0c05130
    [9]
    Gao T N, Wang T, Wu W, et al. Solvent-induced self-assembly strategy to synthesize well-defined hierarchically porous polymers[J]. Advanced Materials,2019,31:1806254. doi: 10.1002/adma.201806254
    [10]
    Wang H, Shao Y, Mei S, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120:9363-9419. doi: 10.1021/acs.chemrev.0c00080
    [11]
    Liu S, Gordiichuk P, Wu Z S, et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers[J]. Nature Communications,2015,6:8817. doi: 10.1038/ncomms9817
    [12]
    Wang S, Zhang C, Shu Y, et al. Layered microporous polymers by solvent knitting method[J]. Science Advances,2017,3:1602610. doi: 10.1126/sciadv.1602610
    [13]
    Divya M L, Lee Y S, Aravindan V. Solvent co-intercalation: An emerging mechanism in Li-, Na- and K-ion capacitors[J]. ACS Energy Letters,2021,6:4228-4244. doi: 10.1021/acsenergylett.1c01801
    [14]
    Wu X, Meng X, Ding J, et al. Preparation of core-shell structured amorphous aluminum hydroxide ultra-fine powders via a microwave-hydrothermal route[J]. Materials Letters,2011,65:2133-2135. doi: 10.1016/j.matlet.2011.04.072
    [15]
    Kong D, Gao Y, Xiao Z, et al. Rational design of carbon-rich materials for energy storage and conversion[J]. Advanced Materials, 2018, e1804973.
    [16]
    Li B, Gong R, Wang W, et al. A new strategy to microporous polymers: Knitting rigid aromatic building blocks by external cross-linker[J]. Macromolecules,2011,44:2410-2414. doi: 10.1021/ma200630s
    [17]
    Sun Y, Wang T, Li A, et al. Knitting N-doped hierarchical porous polymers to stabilize ultra-small pd nanoparticles for solvent-free catalysis[J]. Chemistry-an Asian Journal,2017,12:3039-3045. doi: 10.1002/asia.201701104
    [18]
    Gang X, Krishnamoorthy M, Jiang W, et al. A novel in-situ preparation of N-rich spherical porous carbon as greatly enhanced material for high-performance supercapacitors[J]. Carbon,2021,171:62-71. doi: 10.1016/j.carbon.2020.09.004
    [19]
    Niu P, Yang Y, Li Z, et al. Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods[J]. Nano Research,2022,15:8109-8117. doi: 10.1007/s12274-022-4496-y
    [20]
    Liu Y, Zhen Y, Li T, et al. High-capacity, dendrite-free, and ultrahigh-rate lithium-metal anodes based on monodisperse N-doped hollow carbon nanospheres[J]. Small,2020,16:2004770. doi: 10.1002/smll.202004770
    [21]
    Yang P, Li T, Li H, et al. Progress in the graphitization and applications of modified resin carbons[J]. New Carbon Materials,2023,38:96-108.
    [22]
    Qin D, Wang L, Zeng X, et al. Tailored edge-heteroatom tri-doping strategy of turbostratic carbon anodes for high-rate performance lithium and sodium-ion batteries[J]. Energy Storage Materials,2023,54:498-507. doi: 10.1016/j.ensm.2022.10.049
    [23]
    Ye X L, Huang Y Q, Tang X Y, et al. Two-dimensional extended π-conjugated triphenylene-core covalent organic polymer[J]. Journal of Materials Chemistry A,2019,7:3066-3071. doi: 10.1039/C8TA10554E
    [24]
    Ye F, Gong L, Long Y, et al. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries[J]. Advanced Energy Materials,2021,11:2101390. doi: 10.1002/aenm.202101390
    [25]
    Liu M, Wu F, Zheng L, et al. Nature-inspired porous multichannel carbon monolith: Molecular cooperative enables sustainable production and high-performance capacitive energy storage[J]. InfoMat,2021,3:1154-1170. doi: 10.1002/inf2.12231
    [26]
    Mao W, Yue W, Xu Z, et al. Development of a synergistic activation strategy for the pilot-scale construction of hierarchical porous graphitic carbon for energy storage applications[J]. ACS Nano,2020,14:4741-4754. doi: 10.1021/acsnano.0c00620
    [27]
    Lee J M, Briggs M E, Hasell T, et al. Hyperporous carbons from hypercrosslinked polymers[J]. Advanced Materials,2016,28:9804-9810. doi: 10.1002/adma.201603051
    [28]
    Shang M, Zhang J, Liu X, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science,2021,542:148697. doi: 10.1016/j.apsusc.2020.148697
    [29]
    Bi H, He X, Zhang H, et al. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance[J]. Renewable Energy,2021,170:188-196. doi: 10.1016/j.renene.2021.01.099
    [30]
    Wei Y C, Zhou J, Yang L, et al. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials[J]. New Carbon Materials,2022,37:707-715. doi: 10.1016/S1872-5805(22)60595-X
    [31]
    Wang K, Xu Y, Wu H, et al. A hybrid lithium storage mechanism of hard carbon enhances its performance as anodes for lithium-ion batteries[J]. Carbon,2020,178:443-450.
    [32]
    Wei F, Bi H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica,2020,36:1903043. doi: 10.3866/PKU.WHXB201903043
    [33]
    Wei F, He X, Ma L, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters,2020,12:82. doi: 10.1007/s40820-020-00416-2
    [34]
    Li G, Yang Z, Yin Z, et al. A review on non-aqueous dual-carbon lithium-ion capacitors[J]. Journal of Materials Chemistry A,2019,7:15541-15563. doi: 10.1039/C9TA01246J
    [35]
    Zou K, Deng Y, Wu W, et al. A novel eutectic solvent precursor for efficiently preparing N-doped hierarchically porous carbon nanosheets with unique surface functional groups and micropores towards dual-carbon lithium-ion capacitors[J]. Journal of Materials Chemistry A,2021,9:13631-13641. doi: 10.1039/D1TA03071J
    [36]
    Qian T, Huang Y, Zhang M, et al. Non-corrosive and low-cost synthesis of hierarchically porous carbon frameworks for high-performance lithium-ion capacitors[J]. Carbon,2021,173:646-654. doi: 10.1016/j.carbon.2020.11.051
    [37]
    Zhao X, Zhang X, Li C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering,2019,7:11275-11283.
    [38]
    Yang Y, Lin Q, Ding B, et al. Lithium-ion capacitor based on nanoarchitectured polydopamine/graphene composite anode and porous graphene cathode[J]. Carbon,2020,167:627-633. doi: 10.1016/j.carbon.2020.05.077
    [39]
    Yan W, Yu F, Jiang Y, et al. Self-assembly construction of carbon nanotube network-threaded tetrathiafulvalene-bridging covalent organic framework composite anodes for high-performance hybrid lithium-ion capacitors[J]. Small Structures,2022,3:2200126. doi: 10.1002/sstr.202200126
    [40]
    Wang C W, Yang D J, Huang S, et al. Multi-stage explosion of lignin: A new horizon for constructing defect-rich carbon towards advanced lithium ion storage[J]. Green Chemistry,2022,24:5941-5951. doi: 10.1039/D2GC01635D
    [41]
    Luo J, Zhang W, Yuan H, et al. Pillared structure design of Mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors[J]. ACS Nano,2017,11:2459-2469. doi: 10.1021/acsnano.6b07668
    [42]
    Ma Y, Wang K, Xu Y, et al. Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors[J]. Carbon,2023,202:175-185. doi: 10.1016/j.carbon.2022.11.030
    [43]
    Zhou S, Chiang C L, Zhao J, et al. Extra storage capacity enabled by structural defects in pseudocapacitive NbN monocrystals for high-energy hybrid supercapacitors[J]. Advanced Functional Materials,2022,32:2112592. doi: 10.1002/adfm.202112592
    [44]
    Li G, Huang Y, Yin Z, et al. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance[J]. Energy Storage Materials,2020,24:304-311. doi: 10.1016/j.ensm.2019.07.046
  • 20230508supportting imformation.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(285) PDF Downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return