Volume 38 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
ZHANG Meng-tian, QU Hao-tian, ZHOU Guang-min. The factors that influence the electrochemical behavior of lithium metal anodes: electron transfer and Li-ion transport. New Carbon Mater., 2023, 38(4): 776-786. doi: 10.1016/S1872-5805(23)60766-8
Citation: ZHANG Meng-tian, QU Hao-tian, ZHOU Guang-min. The factors that influence the electrochemical behavior of lithium metal anodes: electron transfer and Li-ion transport. New Carbon Mater., 2023, 38(4): 776-786. doi: 10.1016/S1872-5805(23)60766-8

The factors that influence the electrochemical behavior of lithium metal anodes: electron transfer and Li-ion transport

doi: 10.1016/S1872-5805(23)60766-8
More Information
  • Author Bio:

    张梦天,硕士研究生. E-mail:zmt21@mails.tsinghua.edu.cn

  • Corresponding author: ZHOU Guangmin, Ph. D, Associate Professor. E-mail: guangminzhou@sz.tsinghua.edu.cn
  • Received Date: 2023-05-20
  • Accepted Date: 2023-06-23
  • Rev Recd Date: 2023-06-23
  • Available Online: 2023-07-05
  • Publish Date: 2023-08-01
  • Structured carbon-based hosts for the Li anode both improve the transport of Li-ions and reduce the electron transfer rate and have proven to be an effective way to suppress dendrite growth in lithium metal anodes. An in-depth understanding of these effects is needed to clarify the intrinsic electrochemical mechanism involved. We used the finite element method to simulate the two crucial processes controlling Li-ion behavior, electron transfer and Li-ion transport, and visualized the local deposition rate, the overpotential, and the Li-ion concentration in a three-dimensional (3D) Li//electrolyte//Li cell. Our analysis showed a competitive relationship between the rates of Li-ion transport and electron transfer. When the electron transfer rate is relatively slow, there are sufficient Li-ions available near the anode surface and the deposition behavior is controlled by electron transfer. However, when the number of Li-ions is low, Li-ion transport dominates the deposition process because it is unable to keep up with electron transfer, and this causes dendrite formation. Therefore, reducing the reactivity of the Li anode and accelerating Li-ion transport are the two key factors to produce uniform Li metal deposition on the anode, particularly under fast charging conditions and in practical use.
  • loading
  • [1]
    Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy,2019,4(3):180-186. doi: 10.1038/s41560-019-0338-x
    [2]
    Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews,2017,117(15):10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [3]
    Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology,2017,12(3):194-206. doi: 10.1038/nnano.2017.16
    [4]
    Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [5]
    Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium–sulfur batteries[J]. Nature Energy,2022,7(4):312-319. doi: 10.1038/s41560-022-01001-0
    [6]
    Bruce P G, Freunberger S A, Hardwick L J, et al. Li–O2 and Li–S batteries with high energy storage[J]. Nature Materials,2012,11(1):19-29. doi: 10.1038/nmat3191
    [7]
    Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy,2018,3(1):16-21.
    [8]
    Xu X Q, Cheng X B, Jiang F N, et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries[J]. SusMat,2022,2(4):435-444. doi: 10.1002/sus2.74
    [9]
    Chen S, Niu C, Lee H, et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable li-metal batteries[J]. Joule,2019,3(4):1094-1105. doi: 10.1016/j.joule.2019.02.004
    [10]
    Ni S, Sheng J, Zhang C, et al. Dendrite-free lithium deposition and stripping regulated by aligned microchannels for stable lithium metal batteries[J]. Advanced Functional Materials,2022,32(21):2200682. doi: 10.1002/adfm.202200682
    [11]
    Ni S, Zhang M, Li C, et al. A 3D framework with Li3N–Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode[J]. Advanced Materials,2023,35(8):2209028. doi: 10.1002/adma.202209028
    [12]
    Piao Z, Gao R, Liu Y, et al. A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries[J]. Advanced Materials,2023,35(15):2206009.
    [13]
    Piao Z, Ren H R, Lu G, et al. Stable operation of lithium metal batteries with aggressive cathode chemistries at 4.9 V[J]. Angewandte Chemie International Edition,2023,62(15):e202300966. doi: 10.1002/anie.202300966
    [14]
    Park S, Jeong S Y, Lee T K, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries[J]. Nature Communications,2021,12(1):838. doi: 10.1038/s41467-021-21106-6
    [15]
    Sun C, Sheng J, Zhang Q, et al. Self-extinguishing janus separator with high safety for flexible lithium-sulfur batteries[J]. Science China Materials,2022,65(8):2169-2178. doi: 10.1007/s40843-022-2034-5
    [16]
    Sheng J, Zhang Q, Liu M, et al. Stabilized solid electrolyte interphase induced by ultrathin boron nitride membranes for safe lithium metal batteries[J]. Nano Letters,2021,21(19):8447-8454. doi: 10.1021/acs.nanolett.1c03106
    [17]
    Luo D, Zheng L, Zhang Z, et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries[J]. Nature Communications,2021,12(1):186. doi: 10.1038/s41467-020-20339-1
    [18]
    Guo W, Han Q, Jiao J, et al. In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life[J]. Angewandte Chemie International Edition,2021,60(13):7267-7274. doi: 10.1002/anie.202015049
    [19]
    Wang Y, Liu F, Fan G, et al. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes[J]. Journal of the American Chemical Society,2021,143(7):2829-2837. doi: 10.1021/jacs.0c12051
    [20]
    Thanner K, Varzi A, Buchholz D, et al. Artificial solid electrolyte interphases for lithium metal electrodes by wet processing: The role of metal salt concentration and solvent choice[J]. ACS Applied Materials & Interfaces,2020,12(29):32851-32862.
    [21]
    Kim S, Park S O, Lee M Y, et al. Stable electrode–electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries[J]. Energy Storage Materials,2022,45:1-13. doi: 10.1016/j.ensm.2021.10.031
    [22]
    Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials,2015,14(3):271-279. doi: 10.1038/nmat4170
    [23]
    Chen M, Zheng J, Sheng O, et al. Sulfur–nitrogen Co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode[J]. Journal of Materials Chemistry A,2019,7(31):18267-18274. doi: 10.1039/C9TA05684J
    [24]
    Tang L, Zhang R, Zhang X, et al. ZnO nanoconfined 3D porous carbon composite microspheres to stabilize lithium nucleation/growth for high-performance lithium metal anodes[J]. Journal of Materials Chemistry A,2019,7(33):19442-19452. doi: 10.1039/C9TA06401J
    [25]
    Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of The Electrochemical Society,1993,140(6):1526. doi: 10.1149/1.2221597
    [26]
    Kemper P, Li S E, Kum D. Simplification of pseudo two dimensional battery model using dynamic profile of lithium concentration[J]. Journal of Power Sources,2015,286:510-525. doi: 10.1016/j.jpowsour.2015.03.134
    [27]
    Xu X, Liu Y, Hwang J Y, et al. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode[J]. Advanced Energy Materials,2020,10(44):2002390. doi: 10.1002/aenm.202002390
    [28]
    Liu Y, Xu X, Sadd M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal[J]. Advanced Science,2021,8(5):2003301. doi: 10.1002/advs.202003301
    [29]
    Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources,2015,300:376-385. doi: 10.1016/j.jpowsour.2015.09.055
    [30]
    Zhang R, Shen X, Cheng X B, et al. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?[J]. Energy Storage Materials,2019,23:556-565. doi: 10.1016/j.ensm.2019.03.029
    [31]
    Biswal P, Stalin S, Kludze A, et al. Nucleation and early stage growth of li electrodeposits[J]. Nano Letters,2019,19(11):8191-8200. doi: 10.1021/acs.nanolett.9b03548
    [32]
    Xu X, Jiao X, Kapitanova O O, et al. Diffusion limited current density: A watershed in electrodeposition of lithium metal anode[J]. Advanced Energy Materials,2022,12(19):2200244. doi: 10.1002/aenm.202200244
    [33]
    Yoon G, Moon S, Ceder G, et al. Deposition and stripping behavior of lithium metal in electrochemical system: Continuum mechanics study[J]. Chemistry of Materials,2018,30(19):6769-6776. doi: 10.1021/acs.chemmater.8b02623
    [34]
    Jana A, Woo S I, Vikrant K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science,2019,12(12):3595-3607.
    [35]
    Allen J, Bard, Larry R Faulkner. Electrochemical methods: Fundamentals and applications, new york: Wiley, 2001, 2nd ed[J]. Russian Journal of Electrochemistry,2002,38(12):1364-1365. doi: 10.1023/A:1021637209564
    [36]
    Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution[J]. Journal of The Electrochemical Society,2005,152(3):J23. doi: 10.1149/1.1856988
    [37]
    Wang Y, Wang J, Zhao X, et al. Reducing the charge overpotential of Li –O2 batteries through band-alignment cathode design[J]. Energy & Environmental Science,2020,13(8):2540-2548.
    [38]
    Stuve E M. Overpotentials in Electrochemical Cells [M]. Encyclopedia of applied electrochemistry. New York; Springer New York. 2014: 1445-1453.
    [39]
    Bai P, Li J, Brushett F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science,2016,9(10):3221-3229.
    [40]
    Henry J S S. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid[J]. Proceedings of the Physical Society of London,1899,17(1):496. doi: 10.1088/1478-7814/17/1/332
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(232) PDF Downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return