Volume 38 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
XI Shuang, GAO Xing-wei, CHENG Xi-ming, LIU Hui-long. Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor. New Carbon Mater., 2023, 38(5): 913-924. doi: 10.1016/S1872-5805(23)60769-3
Citation: XI Shuang, GAO Xing-wei, CHENG Xi-ming, LIU Hui-long. Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor. New Carbon Mater., 2023, 38(5): 913-924. doi: 10.1016/S1872-5805(23)60769-3

Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor

doi: 10.1016/S1872-5805(23)60769-3
Funds:  This work was financially supported by the Natural Science Foundation of Guangdong Province, China (2022A1515011334) and National Natural Science Foundation of China (52205457)
More Information
  • Corresponding author: XI Shuang, Associate professor. E-mail: shuangxi@njfu.edu.cn; LIU Hui-long, Associate professor. E-mail: huilong.liu@gdut.edu.cn
  • Received Date: 2023-03-23
  • Accepted Date: 2023-06-15
  • Rev Recd Date: 2023-06-15
  • Available Online: 2023-07-12
  • Publish Date: 2023-10-01
  • The rapid development of flexible supercapacitors has been impeded by the difficulty of preparing flexible electrodes. We report the fabrication of a highly flexible and conductive microporous graphene-based substrate obtained by direct laser writing combined with KOH activation, which we call activated laser-produced graphene (a-LPG), which is then decorated with electrochemically deposited MnO2 to form a flexible a-LIG/MnO2 thin-film electrode. This hybrid electrode has a high areal capacitance of 304.61 mF/cm2 at a current density of 1 mA/cm2 in a 1 mol/L Na2SO4 aqueous electrolyte. A flexible asymmetric supercapacitor with a-LIG/MnO2 as the anode, a-LIG as the cathode and PVA/ H3PO4 as a gel electrolyte was assembled, giving an areal energy density of 2.61 μWh/cm2 at a power density of 260.28 µW/cm2 and an ultra-high areal capacitance of 18.82 mF/cm2 at 0.2 mA/cm2, with 90.28% capacitance retained after 5 000 cycles. It also has an excellent electrochemical performance even in the bent state. This work provides an easy and scalable method to design high-performance flexible supercapacitor electrodes and may open a new way for their large-scale fabrication.
  • loading
  • [1]
    Bao J, Lin N, Guo J, et al. Effects of nano-SiO2 doped PbO2 as the positive electrode on the performance of lead-carbon hybrid capacitor[J]. Journal of Colloid and Interface Science,2020,574:377-384. doi: 10.1016/j.jcis.2020.03.082
    [2]
    Zhang M, Dong L, Zhang C, et al. Heterogeneous nucleation of Li3VO4 regulated in dense graphene aerogel for lithium ion capacitors[J]. Journal of Power Sources,2020,468:228364. doi: 10.1016/j.jpowsour.2020.228364
    [3]
    Jiang H, Wang S, Zhang B, et al. High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match[J]. Chemical Engineering Journal,2020,396:125207. doi: 10.1016/j.cej.2020.125207
    [4]
    Clerici F, Fontana M, Bianco S, et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2016,8(16):10459-10465.
    [5]
    Kang S H, Kim I G, Kim B N, et al. Facile fabrication of flexible in‐plane graphene micro‐supercapacitor via flash reduction[J]. ETRI Journal,2018,40(2):275-282. doi: 10.4218/etrij.2017-0242
    [6]
    Zhao Y, Liu C, Lu Q, et al. Recent progress on freestanding carbon electrodes for flexible supercapacitors[J]. New Carbon Materials,2022,37(5):875-897. doi: 10.1016/S1872-5805(22)60637-1
    [7]
    Kong K, Xue W, Zhu W, et al. The fabrication of bowl-shaped polypyrrole/graphene nanostructural electrodes and its application in all-solid-state supercapacitor devices[J]. Journal of Power Sources,2020,470:228452. doi: 10.1016/j.jpowsour.2020.228452
    [8]
    Zhang L, DeArmond D, Alvarez N T, et al. Flexible micro‐supercapacitor based on graphene with 3D structure[J]. Small,2017,13(10):1603114. doi: 10.1002/smll.201603114
    [9]
    Zaccagnini P, di Giovanni D, Gomez M G, et al. Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis[J]. Electrochimica Acta,2020,357:136838. doi: 10.1016/j.electacta.2020.136838
    [10]
    Tran T X, Choi H, Che C H, et al. Laser-induced reduction of graphene oxide by intensity-modulated line beam for supercapacitor applications[J]. ACS Applied Materials & Interfaces,2018,10(46):39777-39784.
    [11]
    Nan H, Liu M, Zhang W, et al. One-step synthesis of NiCo2S4 with high electrochemical performance used for hybrid capacitor[J]. Journal of Alloys and Compounds,2020,832:155037. doi: 10.1016/j.jallcom.2020.155037
    [12]
    Liu Z, Wang H I, Narita A, et al. Photoswitchable micro-supercapacitor based on a diarylethene-graphene composite film[J]. Journal of the American Chemical Society,2017,139(28):9443-9446. doi: 10.1021/jacs.7b04491
    [13]
    Selvakumar M, De S, Chidangil S, et al. Laser induced graphene with biopolymer electrolyte for supercapacitor applications[J]. Materials Today:Proceedings,2022,48:365-370. doi: 10.1016/j.matpr.2020.08.791
    [14]
    Liu M, Wu J N, Cheng H Y. Effects of laser processing parameters on properties of laser-induced graphene by irradiating CO2 laser on polyimide[J]. Science China Technological Sciences,2022,65(1):41-52. doi: 10.1007/s11431-021-1918-8
    [15]
    Mikheev K G, Zonov R G, Mogileva T N, et al. Optical anisotropy of laser-induced graphene films[J]. Optics & Laser Technology,2021,141:107143.
    [16]
    Kim K Y, Choi H, Van Tran C, et al. Simultaneous densification and nitrogen doping of laser-induced graphene by duplicated pyrolysis for supercapacitor applications[J]. Journal of Power Sources,2019,441:227199. doi: 10.1016/j.jpowsour.2019.227199
    [17]
    Li H, Shen H, Shi Y, et al. Progress and prospects of graphene for in-plane micro-supercapacitors[J]. New Carbon Materials,2022,37(5):781-801. doi: 10.1016/S1872-5805(22)60640-1
    [18]
    Wang M, Chen J, Lu K, et al. Preparation of high-performance flexible microsupercapacitors based on papermaking and laser-induced graphene techniques[J]. Electrochimica Acta,2022,401:139490. doi: 10.1016/j.electacta.2021.139490
    [19]
    Liu J, Xu Y G, Kong L B. Synthesis of polyvalent ion reaction of MoS2/CoS2-RGO anode materials for high-performance sodium-ion batteries and sodium-ion capacitors[J]. Journal of colloid and interface science,2020,575:42-53. doi: 10.1016/j.jcis.2020.04.074
    [20]
    Liu H, Moon K, Li J, et al. Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors[J]. Nano Energy,2020,77:105058. doi: 10.1016/j.nanoen.2020.105058
    [21]
    Peng Y, Zhao W, Ni F, et al. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J]. ACS Nano,2021,15(12):19490-19502. doi: 10.1021/acsnano.1c06277
    [22]
    Zhang Z, Song M, Hao J, et al. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon,2018,127:287-296. doi: 10.1016/j.carbon.2017.11.014
    [23]
    Singh S P, Li Y, Zhang J, et al. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes[J]. ACS Nano,2018,12(1):289-297. doi: 10.1021/acsnano.7b06263
    [24]
    Nebel A, Herrmann T, Henrich B, et al. Fast micromachining using picosecond lasers[C]//Critical Review: Industrial Lasers and Applications. SPIE, 2005, 5706: 87-98 Doi: 10.1117/12.601651.
    [25]
    Liu J, Liu H, Lin N, et al. Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing[J]. Materials Chemistry and Physics,2020,251:123083. doi: 10.1016/j.matchemphys.2020.123083
    [26]
    Biswas R K, Vijayaraghavan R K, McNally P, et al. Graphene growth kinetics for CO2 laser carbonization of polyimide[J]. Materials Letters,2022,307:131097. doi: 10.1016/j.matlet.2021.131097
    [27]
    Liu H, Xie Y, Liu J, et al. Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors[J]. Chemical Engineering Journal,2020,393:124672. doi: 10.1016/j.cej.2020.124672
    [28]
    Xu R, Wang Z, Gao L, et al. Effective design of MnO2 nanoparticles embedded in laser-induced graphene as shape-controllable electrodes for flexible planar microsupercapacitors[J]. Applied Surface Science,2022,571:151385. doi: 10.1016/j.apsusc.2021.151385
    [29]
    Jiang S, Shi T, Liu D, et al. Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors[J]. Journal of Power Sources,2014,262:494-500. doi: 10.1016/j.jpowsour.2013.12.009
    [30]
    Ribeiro-Soares J, Oliveros M E, Garin C, et al. Structural analysis of polycrystalline graphene systems by Raman spectroscopy[J]. Carbon,2015,95:646-652. doi: 10.1016/j.carbon.2015.08.020
    [31]
    Lamberti A, Perrucci F, Caprioli M, et al. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties[J]. Nanotechnology,2017,28(17):174002. doi: 10.1088/1361-6528/aa6615
    [32]
    Zhu C, Dong X, Mei X, et al. Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes[J]. Journal of Materials Science,2020,55(36):17108-17119. doi: 10.1007/s10853-020-05212-2
    [33]
    Mahmood F, Zhang H, Lin J, et al. Laser-induced graphene derived from kraft lignin for flexible supercapacitors[J]. ACS Omega,2020,5(24):14611-14618. doi: 10.1021/acsomega.0c01293
    [34]
    Lu X, Luo X, Zhang J, et al. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene[J]. Nano Research,2016,9:3559-3597. doi: 10.1007/s12274-016-1224-5
    [35]
    Yuan M, Luo F, Rao Y, et al. SWCNT-bridged laser-induced graphene fibers decorated with MnO2 nanoparticles for high-performance flexible micro-supercapacitors[J]. Carbon,2021,183:128-137. doi: 10.1016/j.carbon.2021.07.014
    [36]
    Liu X, Cheng H, Zhao Y, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide[J]. Biosensors and Bioelectronics,2022,199:113906. doi: 10.1016/j.bios.2021.113906
    [37]
    Ma J, Cui Z, Du Y, et al. Multifunctional Prussian blue/graphene ink for flexible biosensors and supercapacitors[J]. Electrochimica Acta,2021,387:138496. doi: 10.1016/j.electacta.2021.138496
    [38]
    Duignan T T, Zhao X S. Impurities limit the capacitance of carbon-based supercapacitors[J]. The Journal of Physical Chemistry C,2019,123(7):4085-4093. doi: 10.1021/acs.jpcc.8b12031
    [39]
    Parmeggiani M, Zaccagnini P, Stassi S, et al. PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes[J]. ACS Applied Materials & Interfaces,2019,11(36):33221-33230.
    [40]
    Ma W, Zhu J, Wang Z, et al. Recent advances in preparation and application of laser-induced graphene in energy storage devices[J]. Materials Today Energy,2020,18:100569. doi: 10.1016/j.mtener.2020.100569
    [41]
    Qu W, Zhao Z, Wang J, et al. Direct laser writing of pure lignin on carbon cloth for highly flexible supercapacitors with enhanced areal capacitance[J]. Sustainable Energy & Fuels,2021,5(14):3744-3754.
    [42]
    Khandelwal M, Van Tran C, In J B. Nitrogen and phosphorous Co-doped laser-induced graphene: A high-performance electrode material for supercapacitor applications[J]. Applied Surface Science,2022,576:151714. doi: 10.1016/j.apsusc.2021.151714
    [43]
    Li Y, Luong D X, Zhang J, et al. Laser‐induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces[J]. Advanced Materials,2017,29(27):1700496. doi: 10.1002/adma.201700496
    [44]
    Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of power sources,2011,196(1):1-12. doi: 10.1016/j.jpowsour.2010.06.084
    [45]
    Beidaghi M, Wang C. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes[J]. Electrochimica Acta,2011,56(25):9508-9514. doi: 10.1016/j.electacta.2011.08.054
    [46]
    Peng Z, Ye R, Mann J A, et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano,2015,9(6):5868-5875. doi: 10.1021/acsnano.5b00436
  • 20230509supportting imformation.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(311) PDF Downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return