Volume 38 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
LI Rui-zhen, QIN Lei, FU Dong-ju, WANG Mei-ling, SONG Xing-fu, BAI Yong-hui, LIU Wei-feng, LIU Xu-guang. A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres. New Carbon Mater., 2023, 38(6): 1092-1103. doi: 10.1016/S1872-5805(23)60772-3
Citation: LI Rui-zhen, QIN Lei, FU Dong-ju, WANG Mei-ling, SONG Xing-fu, BAI Yong-hui, LIU Wei-feng, LIU Xu-guang. A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres. New Carbon Mater., 2023, 38(6): 1092-1103. doi: 10.1016/S1872-5805(23)60772-3

A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres

doi: 10.1016/S1872-5805(23)60772-3
Funds:  This work was financially supported by Key R&D Program of Shanxi Province (International Cooperation, 201903D421077), Central Leading Science and Technology Development Foundation of Shanxi Province (YDZJSX2022A009), Key Program of Yinchuan science and Technology Bureau (2021ZD08), National Natural Science Foundation of China (51972221, 51603142, 51902222), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2021-K46), Natural Science Foundation of Shanxi Province (20210302124046), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0255, 2020L0097)
More Information
  • Author Bio:

    李瑞珍,硕士研究生. E-mail:1473623664@qq.com

  • Corresponding author: LIU Wei-feng, Associate professor. E-mail: lwf061586@yeah.net; LIU Xu-guang, Professor. E-mail:liuxuguang@tyut.edu.cn
  • Received Date: 2022-12-04
  • Accepted Date: 2023-07-04
  • Rev Recd Date: 2023-06-28
  • Available Online: 2023-07-12
  • Publish Date: 2023-11-23
  • An electrochemical sensor for Cu(II) based on ion-imprinted polymers was prepared by combining surface imprinting with electrochemical polymerization deposition. The sensor was modified by ion-imprinted magnetic carbon nanospheres with a specific selectivity and sensitivity for Cu(II). The morphology and structure of the materials were characterized and analyzed. Sensors with the imprinted electrode had a stronger selectivity and higher sensitivity towards Cu(II) compared with their original counterparts. Within relative concentrations of Cu(II) from 10−6 to 10−10 mol L−1, the detection limit of the sensor was as low as 5.138×10−16 mol L−1 (S/N=3). The sensor is resistant to interference, and has good reproducibility, and stability, making it excellent for the electrochemical detection of metal ions.
  • loading
  • [1]
    Yu F P, Pan Z L, Li L, et al. Preparation and performance of electrocatalytic carbon membranes for treating micro-polluted water[J]. New Carbon Materials,2022,37(3):615-624. doi: 10.1016/S1872-5805(22)60610-3
    [2]
    Liu W, Zhang R, Kang Y, et al. Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells[J]. New Carbon Materials,2019,34(4):390-402. doi: 10.1016/S1872-5805(19)30024-1
    [3]
    Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans[J]. The American Journal of Clinical Natrition,1998,67(5):952S-959S. doi: 10.1093/ajcn/67.5.952S
    [4]
    Mahata S, Dey S, Mandal B B, et al. 3-(2-Hydroxyphenyl)imidazo[5, 1-a]isoquinoline as Cu(II) sensor, its Cu(II) complex for selective detection of CN ion and biological compatibility[J]. Journal of Photochemistry and Photobiology A:Chemistry,2022,427:113795. doi: 10.1016/j.jphotochem.2022.113795
    [5]
    Wu X X, Shi W, Yang Y F, et al. Multi-targeted fluorescent probes for detection of Zn(II) and Cu(II) ions based on ESIPT mechanism[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,287:122051. doi: 10.1016/j.saa.2022.122051
    [6]
    Wang Y, Wu W T, Wu M B, et al. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Carbon Materials,2015,30(6):550-559. doi: 10.1016/S1872-5805(15)60204-9
    [7]
    Lan G Y, Huang C C, and Chang H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions[J]. Chemical Communications,2010,46(8):1257-1259. doi: 10.1039/b920783j
    [8]
    Kowalewska Z, Ruszczyńska A, and Bulska E. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(3):351-359. doi: 10.1016/j.sab.2005.02.002
    [9]
    Zhang L, Li Z H, Du X H, et al. Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,86:443-448. doi: 10.1016/j.saa.2011.10.065
    [10]
    Hu Q F, Yang G Y, Zhao Y Y, et al. Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection[J]. Analytical and Bioanalytical Chemistry,2003,375(6):831-835. doi: 10.1007/s00216-003-1828-y
    [11]
    Meng X T, Zhu D J, Jiang Y H, et al. Electrochemical sensing of phenacetin on electrochemically reduced graphene oxide modified glassy carbon electrode[J]. New Carbon Materials,2022,37(4):764-772. doi: 10.1016/S1872-5805(21)60087-2
    [12]
    Manousi N, Kabir A, Furton K G, et al. An automatic on-line sol-gel pyridylethylthiopropyl functionalized silica-based sorbent extraction system coupled to flame atomic absorption spectrometry for lead and copper determination in beer samples[J]. Food Chemistry,2022,394:133548. doi: 10.1016/j.foodchem.2022.133548
    [13]
    Lei P, Zhou Y, Zhao S, et al. Carbon-supported X-manganate (X = Ni, Zn and Cu) nanocomposites for sensitive electrochemical detection of trace heavy metal ions[J]. Journal of Hazardous Materials,2022,435:129036. doi: 10.1016/j.jhazmat.2022.129036
    [14]
    Jiang J, Chen X, Niu Y, et al. Advances in flexible sensors with MXene materials[J]. New Carbon Materials,2022,37(2):303-320. doi: 10.1016/S1872-5805(22)60589-4
    [15]
    Huo D Q, Zhang Y, Li N, et al. Three-dimensional graphene/amino-functionalized metal–organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II)[J]. Analytical and Bioanalytical Chemistry,2022,414(4):1575-1586. doi: 10.1007/s00216-021-03779-6
    [16]
    Zuo Y X, Xu J K, Zhu X F, et al. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review[J]. Microchimica Acta,2019,186(3):171. doi: 10.1007/s00604-019-3248-5
    [17]
    Gong Q J, Han H X, Wang Y D, et al. An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite[J]. New Carbon Materials,2020,35(1):34-41. doi: 10.1016/S1872-5805(20)60473-5
    [18]
    An Z L, Liu W F, Liang Q, et al. Ion-imprinted polymers modified sensor for electrochemical detection of Cu2+[J]. Nano,2018,13(12):1850140. doi: 10.1142/S1793292018501400
    [19]
    Liu W F, An Z L, Qin L, et al. Construction of a novel ion imprinted film to remove low concentration Cu2+ from aqueous solution[J]. Chemical Engineering Journal,2021,411:128477. doi: 10.1016/j.cej.2021.128477
    [20]
    Xi Y, Shi H, Liu R, et al. Insights into ion imprinted membrane with a delayed permeation mechanism for enhancing Cd2+ selective separation[J]. Journal of Hazardous Materials,2021,416:125772. doi: 10.1016/j.jhazmat.2021.125772
    [21]
    Gao S J, Liu W F, Fu D J, et al. Research progress on recovering the components of spent Li-ion batteries[J]. New Carbon Materials,2022,37(3):435-460. doi: 10.1016/S1872-5805(22)60605-x
    [22]
    Budnicka M, Sobiech M, Kolmas J, et al. Frontiers in ion imprinting of alkali- and alkaline-earth metal ions – Recent advancements and application to environmental, food and biomedical analysis[J]. TrAC Trends in Analytical Chemistry,2022,156:116711. doi: 10.1016/j.trac.2022.116711
    [23]
    Sala A, Brisset H, Margaillan A, et al. Electrochemical sensors modified with ion-imprinted polymers for metal ion detection[J]. TrAC Trends in Analytical Chemistry,2022,148:116536. doi: 10.1016/j.trac.2022.116536
    [24]
    Yu H Y, Shao P H, Fang L L, et al. Palladium ion-imprinted polymers with PHEMA polymer brushes: Role of grafting polymerization degree in anti-interference[J]. Chemical Engineering Journal,2019,359:176-185. doi: 10.1016/j.cej.2018.11.149
    [25]
    Aminikhah M, Babaei A, and Taheri A. A novel electrochemical sensor based on molecularly imprinted polymer nanocomposite platform for sensitive and ultra-selective determination of citalopram[J]. Journal of Electroanalytical Chemistry,2022,918:116493. doi: 10.1016/j.jelechem.2022.116493
    [26]
    Zhou X Y, Wang B Q, Wang R. Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application[J]. Separation and Purification Technology,2022,298:121469. doi: 10.1016/j.seppur.2022.121469
    [27]
    Wang J Y, Hu J F, Hu S W, et al. Recent progress in the use of graphene/polymer composites to remove oil contaminants from water[J]. New Carbon Materials,2021,36(2):235-252. doi: 10.1016/S1872-5805(21)60018-5
    [28]
    Liu W F, Qin L, An Z L, et al. Thermo-responsive ion imprinted polymer on the surface of magnetic carbon microspheres for identification and removal of low-concentrations of Cu2+[J]. Environmental Chemistry,2018,15(5):306-316. doi: 10.1071/EN18046
    [29]
    Spaolonzi M P, Duarte E D V, Oliveira M G, et al. Green-functionalized carbon nanotubes as adsorbents for the removal of emerging contaminants from aqueous media[J]. Journal of Cleaner Production,2022,373:133961. doi: 10.1016/j.jclepro.2022.133961
    [30]
    Francisco J E, Feiteira F N, Da Silva W A, et al. Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples[J]. Environmental Science and Pollution Research,2019,26(19):19588-19597. doi: 10.1007/s11356-019-05178-y
    [31]
    Chaipuang A, Phungpanya C, Thongpoon C, et al. Synthesis of copper(II) ion-imprinted polymers via suspension polymerization[J]. Polymers for Advanced Technologies,2018,29(12):3134-3141. doi: 10.1002/pat.4434
    [32]
    Adauto A, Wong A, Khan S, et al. A selective electrochemical sensor for the detection of Cd(II) based on a carbon paste electrode impregnated with a novel ion-imprinted hybrid polymer[J]. Electroanalysis,2021,33(6):1557-1566. doi: 10.1002/elan.202100007
    [33]
    Kang W W, Cui Y, Yang Y Z, et al. An acid induction strategy to construct an ultralight and durable amino-functionalized graphene oxide aerogel for enhanced quinoline pollutants extraction from coking wastewater[J]. Chemical Engineering Journal,2021,412:128686. doi: 10.1016/j.cej.2021.128686
    [34]
    Ding J, Wu X D, Shen X D, et al. Synthesis and textural evolution of mesoporous Si3N4 aerogel with high specific surface area and excellent thermal insulation property via the urea assisted sol-gel technique[J]. Chemical Engineering Journal,2020,382:122880. doi: 10.1016/j.cej.2019.122880
    [35]
    Qi J, Li B W, Wang X R, et al. Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+ and Hg2+ ions based on ion imprinting technology[J]. Sensors and Actuators B:Chemical,2017,251:224-233. doi: 10.1016/j.snb.2017.05.052
    [36]
    Prasad B B and Fatma S. Electrochemical sensing of ultra trace copper(II) by alga-OMNiIIP modified pencil graphite electrode[J]. Sensors and Actuators B:Chemical,2016,229:655-663. doi: 10.1016/j.snb.2016.02.028
    [37]
    Gerdan Z, Saylan Y, Uğur M, et al. Ion-imprinted polymer-on-a-sensor for copper detection[J]. Biosensors,2022,12(2):91. doi: 10.3390/bios12020091
    [38]
    Santos J C, Matos C R S, Pereira G B S, et al. Stable CdTe nanocrystals grown in situ in thiol-modified MCM-41 mesoporous silica: Control synthesis and electrochemical detection of Cu2+[J]. Microporous and Mesoporous Materials,2016,221:48-57. doi: 10.1016/j.micromeso.2015.09.024
    [39]
    Fei J J, Wu X H, Sun Y L, et al. Preparation of a novel amino functionalized ion-imprinted hybrid monolithic column for the selective extraction of trace copper followed by ICP-MS detection[J]. Analytica Chimica Acta,2021,1162:338477. doi: 10.1016/j.aca.2021.338477
    [40]
    Xue X T, Zhang M, Gong H Y, et al. Recyclable nanoparticles based on a boronic acid–diol complex for the real-time monitoring of imprinting, molecular recognition and copper ion detection[J]. Journal of Materials Chemistry B,2022,10(35):6698-6706. doi: 10.1039/D1TB02226A
    [41]
    Wang Z M, Zhou C, Wu S W, et al. Ion-imprinted polymer modified with carbon quantum dots as a highly sensitive copper(II) ion probe[J]. Polymers,2021,13(9):1376. doi: 10.3390/polym13091376
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article Views(179) PDF Downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return