Volume 38 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
GAO Zhang-dan, JI Zhong-hai, ZHANG Li-li, TANG Dai-ming, ZOU Meng-ke, XIE Rui-hong, LIU Shao-kang, LIU Chang. Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments. New Carbon Mater., 2023, 38(5): 887-897. doi: 10.1016/S1872-5805(23)60775-9
Citation: GAO Zhang-dan, JI Zhong-hai, ZHANG Li-li, TANG Dai-ming, ZOU Meng-ke, XIE Rui-hong, LIU Shao-kang, LIU Chang. Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments. New Carbon Mater., 2023, 38(5): 887-897. doi: 10.1016/S1872-5805(23)60775-9

Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments

doi: 10.1016/S1872-5805(23)60775-9
More Information
  • Author Bio:

    高张丹和吉忠海为共同第一作者

  • Corresponding author: ZHANG Li-li, Professor. E-mail: zhangll@imr.ac.cn; TANG Dai-ming, Professor. E-mail: tang.daiming@nims.go.jp; LIU Chang, Professor. E-mail: cliu@imr.ac.cn
  • Received Date: 2023-05-31
  • Accepted Date: 2023-08-24
  • Rev Recd Date: 2023-08-23
  • Available Online: 2023-08-28
  • Publish Date: 2023-10-01
  • Vertically aligned carbon nanotube (VACNT) arrays with good mechanical properties and high thermal conductivity can be used as effective thermal interface materials in thermal management. In order to take advantage of the high thermal conductivity along the axis of nanotubes, the quality and height of the arrays need to be optimized. However, the immense synthesis parameter space for VACNT arrays and the interdependence of structural features make it challenging to improve both their height and quality. We have developed a literature mining approach combined with machine learning and high-throughput design to efficiently optimize the height and quality of the arrays. To reveal the underlying relationship between VACNT structures and their key growth parameters, we used random forest regression (RFR) and SHapley Additive exPlanation (SHAP) methods to model a set of published sample data (864 samples). High-throughput experiments were designed to change 4 key parameters: growth temperature, growth time, catalyst composition, and concentration of the carbon source. It was found that a screened Fe/Gd/Al2O3 catalyst was able to grow VACNT arrays with millimeter-scale height and improved quality. Our results demonstrate that this approach can effectively deal with multi-parameter processes such as nanotube growth and improve control over their structures.
  • loading
  • [1]
    Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters,2001,87(21):215502. doi: 10.1103/PhysRevLett.87.215502
    [2]
    Aliev A E, Guthy C, Zhang M, et al. Thermal transport in MWCNT sheets and yarns[J]. Carbon,2007,45(15):2880-2888. doi: 10.1016/j.carbon.2007.10.010
    [3]
    Yang D J, Zhang Q, Chen G, et al. Thermal conductivity of multiwalled carbon nanotubes[J]. Physical Review B,2002,66(16):165440. doi: 10.1103/PhysRevB.66.165440
    [4]
    Tong T, Zhao Y, Delzeit L, et al. Dense, vertically aligned multiwalled carbon nanotube arrays as thermal interface materials[J]. Ieee Transactions on Components and Packaging Technologies,2007,30(1):92-100. doi: 10.1109/TCAPT.2007.892079
    [5]
    Shiomi J, Maruyama S. Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes[J]. Japanese Journal of Applied Physics,2008,47(4):2005-2009. doi: 10.1143/JJAP.47.2005
    [6]
    Chen G, Futaba D N, Kimura H, et al. Absence of an ideal single-walled carbon nanotube forest structure for thermal and electrical conductivities[J]. ACS Nano,2013,7(11):10218-10224. doi: 10.1021/nn404504f
    [7]
    Geng C, Chen Y X, Shi L L, et al. Design of active sites in carbon materials for electrochemical potassium storage[J]. New Carbon Materials,2022,37(3):461-483. doi: 10.1016/S1872-5805(22)60612-7
    [8]
    El‐Bousiydy H, Lombardo T, Primo EN, et al. What can text mining tell us about lithium‐ion battery researchers’ habits?[J]. Batteries Supercaps,2021,4(5):758-466. doi: 10.1002/batt.202000288
    [9]
    Kim E, Huang K, Tomala A, et al. Data Descriptor: Machine-learned and codified synthesis parameters of oxide materials[J]. Scientific Data,2017,4:170127. doi: 10.1038/sdata.2017.127
    [10]
    Ji Z H, Zhang L L, Tang D M, et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes[J]. Nano Research,2021,14(12):4610-4615. doi: 10.1007/s12274-021-3387-y
    [11]
    Rao R, Carpena-Núñez J, Nikolaev P, et al. Advanced machine learning decision policies for diameter control of carbon nanotubes[J]. Computational Materials,2021,7(1):157. doi: 10.1038/s41524-021-00629-y
    [12]
    Cassell A M, Ng H T, Delzeit L, et al. High throughput methodology for carbon nanomaterials discovery and optimization[J]. Applied Catalysis A-General,2003,254(1):85-96. doi: 10.1016/S0926-860X(03)00279-5
    [13]
    Sugime H, Noda S. Millimeter-tall single-walled carbon nanotube forests grown from ethanol[J]. Carbon,2010,48(8):2203-2211. doi: 10.1016/j.carbon.2010.02.024
    [14]
    Gao Y, Marconnet A M, Xiang R, et al. Heat capacity, thermal conductivity, and interface resistance extraction for single-walled carbon nanotube films using frequency-domain thermoreflectance[J]. Ieee Transactions on Components Packaging and Manufacturing Technology,2013,3(9):1524-1532. doi: 10.1109/TCPMT.2013.2254175
    [15]
    Murakami Y, Einarsson E, Edamura T, et al. Polarization dependent optical absorption properties of single-walled carbon nanotubes and methodology for the evaluation of their morphology[J]. Carbon,2005,43(13):2664-2676. doi: 10.1016/j.carbon.2005.05.036
    [16]
    Shiratori Y, Furuichi K, Noda S, et al. Field emission properties of single-walled carbon nanotubes with a variety of emitter morphologies[J]. Japanese Journal of Applied Physics,2008,47(6):4780-4787. doi: 10.1143/JJAP.47.4780
    [17]
    Thurakitseree T, Kramberger C, Kumamoto A, et al. Reversible diameter modulation of single-walled carbon nanotubes by acetonitrile-containing feedstock[J]. ACS Nano,2013,7(3):2205-2211. doi: 10.1021/nn3051852
    [18]
    Thurakitseree T, Kramberger C, Zhao P, et al. Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes[J]. Carbon,2012,50(7):2635-2640. doi: 10.1016/j.carbon.2012.02.023
    [19]
    Xiang R, Einarsson E, Murakami Y, et al. Diameter modulation of vertically aligned single-walled carbon nanotubes[J]. ACS Nano,2012,6(8):7472-7479. doi: 10.1021/nn302750x
    [20]
    hang C, Yan F, Allen C S, et al. Growth of vertically-aligned carbon nanotube forests on conductive cobalt disilicide support[J]. Journal of Applied Physics,2010,108(2):024311. doi: 10.1063/1.3456168
    [21]
    Wirth C T, Zhang C, Zhong G, et al. Diffusion- and reaction-limited growth of carbon nanotube forests[J]. ACS Nano,2009,3(11):3560-3566. doi: 10.1021/nn900613e
    [22]
    Esconjauregui S, Fouquet M, Bayer B C, et al. Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects[J]. ACS Nano,2010,4(12):7431-7436. doi: 10.1021/nn1025675
    [23]
    Ducati C, Alexandrou I, Chhowalla M, et al. The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition[J]. Journal of Applied Physics,2004,95(11):6387-6391. doi: 10.1063/1.1728293
    [24]
    Ducati C, Alexandrou I, Chhowalla M, et al. Temperature selective growth of carbon nanotubes by chemical vapor deposition[J]. Journal of Applied Physics,2002,92(6):3299-3303. doi: 10.1063/1.1499746
    [25]
    Nessim G D, Hart A J, Kim J S, et al. Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment[J]. Nano letters,2008,8(11):3587-3593. doi: 10.1021/nl801437c
    [26]
    Meshot E R, Plata D L, Tawfick S, et al. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst[J]. ACS Nano,2009,3(9):2477-2486. doi: 10.1021/nn900446a
    [27]
    Meshot E R, Hart A J. Abrupt self-termination of vertically aligned carbon nanotube growth[J]. Applied Physics Letters,2008,92(11):113107. doi: 10.1063/1.2889497
    [28]
    Meshot E R, Bedewy M, Lyons K M, et al. Measuring the lengthening kinetics of aligned nanostructures by spatiotemporal correlation of height and orientation[J]. Nanoscale,2010,2(6):896-900. doi: 10.1039/b9nr00343f
    [29]
    Bedewy M, Meshot E R, Reinker M J, et al. Population growth dynamics of carbon nanotubes[J]. ACS Nano,2011,5(11):8974-8989. doi: 10.1021/nn203144f
    [30]
    Bedewy M, Meshot E R, Hart A J. Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth[J]. Carbon,2012,50(14):5106-5116. doi: 10.1016/j.carbon.2012.06.051
    [31]
    Bedewy M, Farmer B, Hart A J. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth[J]. ACS Nano,2014,8(6):5799-5812. doi: 10.1021/nn500698z
    [32]
    Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite material from a combinatorial library[J]. Science,1998,279(5357):1712-1714. doi: 10.1126/science.279.5357.1712
    [33]
    Li X, Cao A, Jung Y J, et al. Bottom-up growth of carbon nanotube multilayers: unprecedented growth[J]. Nano letters,2005,5(10):1997-2000. doi: 10.1021/nl051486q
    [34]
    Zhang Y, Gregoire J M, Van Dover R B, et al. Ethanol-promoted high-yield growth of few-walled carbon nanotubes[J]. Journal of Physical Chemistry C,2010,114(14):6389-6395. doi: 10.1021/jp100358j
    [35]
    Lundberg S M, Lee S I. A unified approach to interpreting model predictions; proceedings of the 31st annual conference on neural information processing systems (NIPS), long beach, CA, F Dec 04-09, 2017 [C]
    [36]
    Sugime H, Sato T, Nakagawa R, et al. Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes[J]. ACS Nano,2019,13(11):13208-13216. doi: 10.1021/acsnano.9b06181
    [37]
    Chen Z, Kim DY, Hasegawa K, et al. Methane-assisted chemical vapor deposition yielding millimeter-tall single-wall carbon nanotubes of smaller diameter[J]. ACS Nano,2013,7(8):6719-6728. doi: 10.1021/nn401556t
    [38]
    Hasegawa K, Noda S. Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water[J]. ACS Nano,2011,5(2):975-984. doi: 10.1021/nn102380j
    [39]
    Miura S, Yoshihara Y, Asaka M, et al. Millimeter-tall carbon nanotube arrays grown on aluminum substrates[J]. Carbon,2018,130:834-842. doi: 10.1016/j.carbon.2018.01.075
    [40]
    Li MC, Yasui K, Sugime H, et al. Enhanced CO2-assisted growth of single-wall carbon nanotube arrays using Fe/AlOx catalyst annealed without CO2[J]. Carbon,2021,185:264-271. doi: 10.1016/j.carbon.2021.09.031
    [41]
    Sugime H, Sato T, Nakagawa R, et al. Ultra-long carbon nanotube forest via in situ supplements of iron and aluminum vapor sources[J]. Carbon,2021,172:772-780. doi: 10.1016/j.carbon.2020.10.066
    [42]
    Youn S K, Park H G. Morphological evolution of Fe-Mo bimetallic catalysts for diameter and density modulation of vertically aligned carbon nanotubes[J]. Journal of Physical Chemistry C,2013,117(36):18657-18665. doi: 10.1021/jp402941u
    [43]
    Cho W D, Schulz M, Shanov V. Growth termination mechanism of vertically aligned centimeter long carbon nanotube arrays[J]. Carbon,2014,69:609-620. doi: 10.1016/j.carbon.2013.12.088
    [44]
    Cho W D, Schulz M, Shanot V. Growth and characterization of vertically aligned centimeter long CNT arrays[J]. Carbon,2014,72:264-273. doi: 10.1016/j.carbon.2014.01.074
    [45]
    Chen G, Seki Y, Kimura H, et al. Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition[J]. Sci Rep,2014,4:3804. doi: 10.1038/srep03804
    [46]
    Sugime H, Noda S, Maruyama S, et al. Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests[J]. Carbon,2009,47(1):234-241. doi: 10.1016/j.carbon.2008.10.001
    [47]
    Chen B, Wu P. Aligned carbon nanotubes by catalytic decomposition Of C2H2 over Ni-Cr alloy[J]. Carbon,2005,43(15):3172-3177. doi: 10.1016/j.carbon.2005.06.024
    [48]
    Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation[J]. Anesth Analg,2018,126(5):1763-1768. doi: 10.1213/ANE.0000000000002864
    [49]
    Shiratori Y, Sugime H, Noda S. Combinatorial evaluation for field emission properties of carbon nanotubes[J]. Journal of Physical Chemistry C,2008,112(46):17974-17982. doi: 10.1021/jp807078h
  • 20230507supportting imformation.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article Views(330) PDF Downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return