Volume 38 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
ZHAO Hong-wei, LI Li-xiang, ZUO Huai-yang, QU Di, ZHANG Han, TAO Lin, SUN Cheng-guo, JU Dong-ying, AN Bai-gang. Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template. New Carbon Mater., 2023, 38(5): 861-874. doi: 10.1016/S1872-5805(23)60776-0
Citation: ZHAO Hong-wei, LI Li-xiang, ZUO Huai-yang, QU Di, ZHANG Han, TAO Lin, SUN Cheng-guo, JU Dong-ying, AN Bai-gang. Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template. New Carbon Mater., 2023, 38(5): 861-874. doi: 10.1016/S1872-5805(23)60776-0

Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template

doi: 10.1016/S1872-5805(23)60776-0
Funds:  We acknowledge the financial support by grants from the National Natural Science Foundation of China (51872131, 51972156, 51672117, 51672118), the distinguished professor project of the education department of Liaoning, the Startup Fund for Doctoral Research of Liaoning (2023-BS-184), and the University of Science And Technology Liaoning Talent Project Grants (6003000315)
More Information
  • Author Bio:

    赵宏伟,博士. E-mail:hongwei0068@126.com

  • Corresponding author: LI Li-xiang, Professor. E-mail: lxli2005@126.com; AN Bai-gang, Professor. E-mail: bgan@ustl.edu.cn
  • Received Date: 2023-02-28
  • Accepted Date: 2023-06-25
  • Rev Recd Date: 2023-06-25
  • Available Online: 2023-08-28
  • Publish Date: 2023-10-01
  • Zeolite-templated carbons (ZTCs) have a unique three-dimensional (3D) ordered microporous structure and an extra-large surface area, and have excellent properties in adsorption and energy storage. Unfortunately, the lack of efficient synthesis strategies and the difficulty of doing this on a large-scale have seriously limited their development. We have developed a large-scale simple production route using a relatively low synthesis temperature and direct acetylene chemical vapor deposition (CVD) using Co ion-exchanged zeolite Y (CoY) as the template. The Co2+ confined in the zeolite acts as Lewis acid sites to catalyze the pyrolysis of acetylene through the d-π coordination effect, making carbon deposition occur selectively inside the zeolite at 400 °C rather than on the external surface. By systematically investigating the CVD temperature and time, the optimum conditions of 8 h deposition at 400 °C produces an excellent 3D ordered-microporous structure and outstanding structure parameters (3 000 m2 g−1, 1.33 cm3 g−1). Its CO2 adsorption capacity and selectivity are 2.78 mmol g−1 (25 °C, 100 kPa) and 98, respectively. This simple CVD process allows the synthesis of high-quality ZTCs on a large scale at a low cost.
  • loading
  • [1]
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58. doi: 10.1038/354056a0
    [2]
    Geim A K. Graphene: status and prospects[J]. Science,2009,324:1530-1534.
    [3]
    Wang A M, Ren J W, Shi B F, et al. A facile one-pot synthesis of mesoporous graphite-like carbon through the organic-organic co-assembly[J]. Microporous and Mesoporous Materials,2012,151(15):287-292.
    [4]
    Liu W L, Du L Y, Ju S L, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries[J]. ACS Nano,2021,15(3):5679-5688. doi: 10.1021/acsnano.1c00924
    [5]
    Liu L, Kan Y Y, Gao K, et al. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17. 3% efficiency and high reproductivity[J]. Advanced Materials,2020,32(11):1907604. doi: 10.1002/adma.201907604
    [6]
    Zhao H W, Xing T Y, Li L X, et al. Synthesis of cobalt and nitrogen co-doped carbon nanotubes and its ORR activity as the catalyst used in hydrogen fuel cells[J]. International Journal of Hydrogen Energy,2019,44(44):25180-25187.
    [7]
    An B G, Xu S F, Li L X, et al. Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance[J]. Journal of Materials Chemistry A,2013,1(24):7222-7228. doi: 10.1039/c3ta10830a
    [8]
    Mauter M S, Elimelech M. Environmental applications of carbon-based nanomaterials[J]. Environmental Science & Technology,2008,42(16):5843-5859.
    [9]
    Graboski A M, Zakrzevski C A, Shimizu F M, et al. Electronic nose based on carbon nanocomposite sensors for clove essential oil detection[J]. ACS Sensors,2020,5(6):1814-1821. doi: 10.1021/acssensors.0c00636
    [10]
    Zhu C Y, Ye Y W, Guo X, et al. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage[J]. New Carbon Materials,2022,37(1):59-92.
    [11]
    Zhou Y, Jia Z X, Zhao S Y, et al. Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors[J]. Chemical Engineering Journal,2021,416(15):129500.
    [12]
    Li X Y, Sari H M K, Niu L J, et al. Porous graphene nanocages with wrinkled surface enhancing electrocatalytic activity of lithiun/sulfuryl chloride batteries[J]. RSC Advances,2021,11(16):9469-9475. doi: 10.1039/D0RA10756E
    [13]
    Zhang X L, Ruan Z Q, He Q T, et al. Three-dimensional (3D) nanostructure skeleton substrate composed of hollow carbon fiber/carbon nanosheet/ZnO for stable lithium anode[J]. ACS Applied Materials & Interfaces,2021,13(2):3078-3088.
    [14]
    Cheng H Y, Cheng P Y, Chuah X F, et al. Porous N-doped carbon nanostructure integrated with mesh current collector for Li-ion based energy storage[J]. Chemical Engineering Journal,2019,374(15):201-210.
    [15]
    Zhao H W, Zhang Y Q, Li L X, et al. Synthesis of an ordered porous carbon with the dual nitrogen-doped interface and its ORR catalysis performance[J]. Chinese Chemical Letters,2021,32(1):140-145. doi: 10.1016/j.cclet.2020.11.035
    [16]
    Zhu Y, Miyake K, Shu Y, et al. Single atomic Co coordinated with N in microporous carbon for oxygen reduction reaction obtained from Co/2-methylimidazole anchored to Y zeolite as a template[J]. Materials Today Chemistry,2021,20:100410. doi: 10.1016/j.mtchem.2020.100410
    [17]
    Konnov S V, Dubray F, Clatworthy E B, et al. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals[J]. Angewandte Chemie International Edition,2020,59(44):19553-19560. doi: 10.1002/anie.202006524
    [18]
    Cui X X, Xu Y S, Chen L L, et al. Ultrafine Pd nanoparticles supported on zeolite-templated mesocellular graphene network via framework aluminum mediation: an advanced oxygen reduction electrocatalyst[J]. Applied Catalysis B:Environmental,2019,244:957-964. doi: 10.1016/j.apcatb.2018.12.026
    [19]
    Nueangnoraj K, Ruiz-Rosas R, Nishihara H, et al. Carbon–carbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes[J]. Carbon,2014,67:792-794. doi: 10.1016/j.carbon.2013.10.011
    [20]
    Nomura K, Nishihara H, Yamamoto M, et al. Force-driven reversible liquid–gas phase transition mediated by elastic nanosponges[J]. Nature Communications,2019,10:2559. doi: 10.1038/s41467-019-10511-7
    [21]
    Tang R, Taguchi K, Nishihara H, et al. Insight into the origin of carbon corrosion in positive electrodes of supercapacitors. Journal of Materials Chemistry A, 2019, 7(13): 7480-7488.
    [22]
    Dubey R J C, Nüssli J, Piveteau L, et al. Zeolite-templated carbon as the cathode for a high energy density dual-ion battery[J]. ACS Applied Materials & Interfaces,2019,11(19):17686-17696.
    [23]
    Itoi H, Nishihara H, Kogure T, et al. Three-dimensionally arrayed and mutually connected 1. 2-nm nanopores for high-performance electric double layer capacitor[J]. Journal of the American Chemical Society,2011,133(5):1165-1167. doi: 10.1021/ja108315p
    [24]
    Choi S, Kim H, Lee S, et al. Large-scale synthesis of high-quality zeolite-templated carbons without depositing external carbon layers[J]. Chemical Engineering Journal,2015,280(15):597-605.
    [25]
    Nishihara H, Kyotani T. Zeolite-templated carbons-three-dimensional microporous graphene frameworks[J]. Chemical Communications,2018,54(45):5648-5673. doi: 10.1039/C8CC01932K
    [26]
    Kyotani T, Nagai T, Inoue S, et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels[J]. Chemistry of Materials,1997,9(2):609-615. doi: 10.1021/cm960430h
    [27]
    Matsuoka K, Yamagishi Y, Yamazaki T, et al. Extremely high microporosity and sharp pore size distribution of a large surface area carbon prepared in the nanochannels of zeolite Y[J]. Carbon,2005,43(3):876-879.
    [28]
    Ma Z X, Kyotani T, Tomita Akira. Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite[J]. Chemical Communication, 2000, 2365-2366.
    [29]
    Ma Z X, Kyotani T, Tomita Akira. Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y[J]. Carbon,2002,40(13):2367-2374. doi: 10.1016/S0008-6223(02)00120-3
    [30]
    Hou P X, Yamazaki T, Orikasa H, et al. An easy method for the synthesis of ordered microporous carbons by the template technique[J]. Carbon,2005,43(12):2624-2627. doi: 10.1016/j.carbon.2005.05.001
    [31]
    Zhao H W, Li L X, Liu Y Y, et al. Synthesis and ORR performance of nitrogen-doped ordered microporous carbon by CVD of acetonitrile vapor using silanized zeolite as template[J]. Applied Surface Scienve,2020,504(28):144438.
    [32]
    Kim K, Lee T, Kwon Y, et al. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template[J]. Nature,2016,535:131-135. doi: 10.1038/nature18284
    [33]
    Kim K, Kwon Y, Lee Y, et al. Facile large-scale synthesis of three-dimensional graphene-like ordered microporous carbon via ethylene carbonization in CaX zeolite template[J]. Carbon 2017, 118: 517-523.
    [34]
    Moon G H, Bähr A, Tüysüz H. Structural engineering of 3D carbon materials from transition metal ion-exchanged Y zeolite templates[J]. Chemistry of Materials,2018,30(11):3779-3788. doi: 10.1021/acs.chemmater.8b00861
    [35]
    Han J, Zhang L, Zhao B, et al. The N-doped activated carbonderived from sugarcane bagasse for CO2 adsorption[J]. Industrial Crops and Products,2019,128:290-297. doi: 10.1016/j.indcrop.2018.11.028
    [36]
    Bhadra B N, Seo P W, Jhung S H. Adsorption of diclofenac sodium from water using oxidized activated carbon[J]. Chemical Engineering Journal,2016,301(1):27-34.
    [37]
    Jin Q Q, Fang D, Ye Y L, et al. Cu, Co, or Ni species in exchanged Y zeolite catalysts and their denitration performance for selective catalytic reduction by ammonia[J]. Applied Surface Science,2022,600(30):154075.
    [38]
    Shilina M I, Rostovshchikova T N, Nikolaev S A, et al. Polynuclear Co-oxo cations in the catalytic oxidation of CO on Co-modified ZSM-5 zeolites[J]. Materials Chemistry and Physics,2019,223(1):287-298.
    [39]
    Balahmar N, Lowbridge A M, Mokaya R. Templating of carbon in zeolites under pressure: synthesis of pelletized zeolite templated carbons with improved porosity and packing density for superior gas (CO2 and H2) uptake properties[J]. Journal of Materials Chemistry A,2016,4(37):14254-14266. doi: 10.1039/C6TA06176A
    [40]
    Nishihara H, Ittisanronnachai S, Itoi H, et al. Experimental and theoretical studies of hydrogen/deuterium spillover on Pt-loaded zeolite-templated carbon[J]. The Journal of Physical Chemistry C,2014,118(18):9551-9559. doi: 10.1021/jp5016802
    [41]
    Konwar R J, De M. Effects of synthesis parameters on zeolite templated carbon for hydrogen storage application[J]. Microporous and Mesoporous Materials,2013,175(15):16-24.
    [42]
    Ania C O, Khomenko V, Raymundo-Piñero E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Advanced Functional Materials,2007,17(11):1828-1836. doi: 10.1002/adfm.200600961
    [43]
    Yang Z X, Xia Y D, Mokaya R. Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates[J]. Microporous and Mesoporous Materials,2005,86(1-3):69-80. doi: 10.1016/j.micromeso.2005.05.055
    [44]
    Eveleens C A, Irle S, Page A J. How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth[J]. Carbon,2019,146:535-541. doi: 10.1016/j.carbon.2019.02.027
    [45]
    Miao Z C, Meng J, Liang M F, et al. In-situ CVD synthesis of Ni@N-CNTs/carbon paper electrode for electro-reduction of CO2[J]. Carbon,2021,172:324-333. doi: 10.1016/j.carbon.2020.10.044
    [46]
    Itoi H, Kasai Y, Morishita K, et al. Facile synthesis of high surface area zeolite-templated carbons using divinyblenzene and propylene as carbon sources[J]. Microporous and Mesoporous Materials,2021,326:111378. doi: 10.1016/j.micromeso.2021.111378
    [47]
    Zaretskiy S N, Hong Y K, Ha D H, et al. Growth of carbon nanotubes from Co nanoparticles and C2H2 by thermal chemical vapor deposition[J]. Chemical Physics Letters,2003,372(1-2):300-305. doi: 10.1016/S0009-2614(03)00405-6
    [48]
    Nishihara H, Fujimoto H, Itoi H, et al. Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels[J]. Carbon,2018,129:854-862. doi: 10.1016/j.carbon.2017.12.055
    [49]
    Madison L, Heitzer H, Russell C, et al. Atomistic simulations of CO2 and N2 within cage-type silica zeolites[J]. Langmuir,2011,27(5):1954-1963. doi: 10.1021/la104245c
    [50]
    Mehio N, Dai S, Jiang D. Quantum mechanical basis for kinetic diameters of small gaseous molecules[J]. The Journal of Physical Chemistry A,2014,118(6):1150-1154. doi: 10.1021/jp412588f
    [51]
    Sakamoto H, Fujimori T, Li X L, et al. Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness[J]. Chemical Science,2016,7(7):4204-4210. doi: 10.1039/C6SC00092D
    [52]
    Zhang Y Y, Zhang S N, Wang Z C, et al. Determination of the absolute CH4 adsorption using simplified local density theory and compariosn with the modified Langmuir adsorption model[J]. RSC Advances,2018,8(72):41509-41516. doi: 10.1039/C8RA08586B
    [53]
    Li H J, Wang S C, Zeng Q, et al. Effects of pore structure of different rank coals on methane adsorption heat[J]. Processes,2021,9(11):1971. doi: 10.3390/pr9111971
    [54]
    García-Díez E, Castro-Muñiz A, Paredes J I, et al. CO2 capture by novel hierarchical activated ordered micro-mesoporous carbons derived from low value coal tar products[J]. Microporous and Mesoporous Materials,2021,318:110986. doi: 10.1016/j.micromeso.2021.110986
    [55]
    Wang X J, Yuan B Q, Zhou X, et al. Novel glucose-based adsorbents (Glc-Cs) with high CO2 capacity and excellent CO2/CH4/N2 adsorption selectivity[J]. Chemical Engineering Journal,2017,327:51-59. doi: 10.1016/j.cej.2017.06.074
    [56]
    Li D, Chen Y L, Zheng M, et al. Hierarchically structured porous nitrogen-doped carbon for highly selective CO2 capture[J]. ACS Sustainable Chemistry & Engineering,2016,4(1):298-304.
    [57]
    Kim Y K, Kim G M, Lee J W. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture[J]. Journal of Materials Chemistry A,2015,3(20):10919-10927. doi: 10.1039/C5TA01776A
  • 20230505supportting imformation.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(237) PDF Downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return