Volume 38 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
ZHANG Wei-cai, YANG Chao-wei, HU Shu-yu, FANG Ya-wei, LIN Xiao-min, XIE Zhuo-hao, ZHENG Ming-tao, LIU Ying-liang, LIANG Ye-ru. A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability. New Carbon Mater., 2023, 38(6): 1080-1091. doi: 10.1016/S1872-5805(23)60781-4
Citation: ZHANG Wei-cai, YANG Chao-wei, HU Shu-yu, FANG Ya-wei, LIN Xiao-min, XIE Zhuo-hao, ZHENG Ming-tao, LIU Ying-liang, LIANG Ye-ru. A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability. New Carbon Mater., 2023, 38(6): 1080-1091. doi: 10.1016/S1872-5805(23)60781-4

A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability

doi: 10.1016/S1872-5805(23)60781-4
Funds:  This work was financially supported by Independent Research Project of Maoming Laboratory (2022ZD002) and National Natural Science Foundation of China (51972121 and 52373074)
More Information
  • Author Bio:

    张伟财,博士. E-mail:anbianyuke@163.com

  • Corresponding author: LIU Ying-liang, Professor. E-mail: tliuyl@scau.edu.cn; LIANG Ye-ru, Professor. E-mail: liangyr@scau.edu.cn
  • Received Date: 2023-04-19
  • Accepted Date: 2023-08-29
  • Rev Recd Date: 2023-08-28
  • Available Online: 2023-10-16
  • Publish Date: 2023-11-23
  • Because of their high electrochemical activity, good structural stability, and abundant active sites, multi-metal sulfide/carbon (MMS/C) composites are of tremendous interest in diverse fields, including catalysis, energy, sensing, and environmental science. However, their cumbersome, inefficient, and environmentally unfriendly synthesis is hindering their practical application. We report a straightforward and universal method for their production which is based on homogeneous multi-phase interface engineering. The method has enabled the production of 14 different MMS/C composites, as examples, with well-organized composite structures, different components, and dense heterointerfaces. Because of their composition and structure, a typical composite has efficient, fast, and persistent lithium-ion storage. A ZnS-Co9S8/C composite anode showed a remarkable rate performance and an excellent capacity of 651 mAh·g−1 at 0.1 A·g−1 after 600 cycles. This work is expected to pave the way for the easy fabrication of MMS/C composites.
  • loading
  • [1]
    Service R F. Lithium-ion battery development takes nobel[J]. Science,2019,366(6463):292-292. doi: 10.1126/science.366.6463.292
    [2]
    Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials,2018,30(33):24.
    [3]
    Liang Y, Zhao C Z, Yuan H, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat,2019,1(1):6-32. doi: 10.1002/inf2.12000
    [4]
    Zubi G, Dufo-Lopez R, Carvalho M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable & Sustainable Energy Reviews,2018,89:292-308.
    [5]
    Cheng H, Shapter J G, Li Y Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. Journal of Energy Chemistry,2021,57:451-468. doi: 10.1016/j.jechem.2020.08.056
    [6]
    Pender J P, Jha G, Youn D H, et al. Electrode degradation in lithium-ion batteries[J]. ACS Nano,2020,14:1243-1295. doi: 10.1021/acsnano.9b04365
    [7]
    Lu J, Chen Z W, Pan F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochemical Energy Reviews,2018,1(1):35-53. doi: 10.1007/s41918-018-0001-4
    [8]
    Wu F X, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [9]
    Li S Q, Wang K, Zhang G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials,2022,32(23):35.
    [10]
    Roselin L S, Juang R S, Hsieh C T, et al. Recent advances and perspectives of carbon-based nanostructures as anode materials for li-ion batteries[J]. Materials,2019,12(8):46.
    [11]
    Zhu C Y, Ye Y W, Guo X, et al. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage[J]. New Carbon Materials,2022,37(1):59-86. doi: 10.1016/S1872-5805(22)60579-1
    [12]
    Zhao J B, Zhang Y Y, Wang Y H, et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries[J]. Journal of Energy Chemistry,2018,27(6):1536-1554. doi: 10.1016/j.jechem.2018.01.009
    [13]
    Zhao Y, Wang L P, Sougrati M T, et al. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance li and na ion battery anodes[J]. Advanced Energy Materials,2017,7(9):70.
    [14]
    Shan Y Y, Li Y, Pang H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries[J]. Advanced Functional Materials,2020,30(23):31.
    [15]
    Kong L, Liu Y, Huang H, et al. Interconnected CoC2/NC-CNTs network as high-performance anode materials for lithium-ion batteries[J]. Science China Materials,2021,64(4):820-829. doi: 10.1007/s40843-020-1477-0
    [16]
    Chen L, Liu Y, Deng Z, et al. Edge-enriched MoS2@C/rGO film as self-standing anodes for high-capacity and long-life lithium-ion batteries[J]. Science China Materials,2021,64(1):96-104. doi: 10.1007/s40843-020-1348-y
    [17]
    Lin L, Wang K, Sarkar A, et al. High-entropy sulfides as electrode materials for li-ion batteries[J]. Advanced Energy Materials,2022,12(8):2103090. doi: 10.1002/aenm.202103090
    [18]
    Zhang Y, Wang Q, Zhu K, et al. Built-in electric field induced interfacial effect enables ultrasmall snsx nanoparticles with high-rate lithium/sodium storage[J]. Chemical Engineering Journal,2022,446:137286. doi: 10.1016/j.cej.2022.137286
    [19]
    Ye Z Q, Jiang Y, Li L, et al. Synergetic anion vacancies and dense heterointerfaces into bimetal chalcogenide nanosheet arrays for boosting electrocatalysis sulfur conversion[J]. Advanced Materials,2022,34(13):2109552. doi: 10.1002/adma.202109552
    [20]
    Cao L, Gao X W, Zhang B, et al. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries[J]. ACS Nano,2020,14(3):3610-3620. doi: 10.1021/acsnano.0c00020
    [21]
    Kang L, Zhang M Y, Zhang J, et al. Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors[J]. Journal of Materials Chemistry A,2020,8(45):24053-24064. doi: 10.1039/D0TA08979F
    [22]
    Li D, Liu Z, Wang J R, et al. Hierarchical trimetallic sulfide FeCo2S4-NiCo2S4 nanosheet arrays supported on a ti mesh: An efficient 3d bifunctional electrocatalyst for full water splitting[J]. Electrochimica Acta,2020,340:135957. doi: 10.1016/j.electacta.2020.135957
    [23]
    Zhang C Q, Lu R H, Liu C, et al. Trimetallic sulfide hollow superstructures with engineered d-band center for oxygen reduction to hydrogen peroxide in alkaline solution[J]. Advanced Science,2022,9(12):2104768. doi: 10.1002/advs.202104768
    [24]
    Yu X, Zhang W W, She L L, et al. Electrodeposition-derived defect-rich heterogeneous trimetallic sulfide/hydroxide nanotubes/nanobelts for efficient electrocatalytic oxygen production[J]. Chemical Engineering Journal,2022,430:133073. doi: 10.1016/j.cej.2021.133073
    [25]
    Jia R, Li L, Shen G, et al. Hierarchical Sb2S3/SnS2/C heterostructure with improved performance for sodium-ion batteries[J]. Science China Materials,2022,65(6):1443-1452. doi: 10.1007/s40843-021-1931-0
    [26]
    Guan B, Sheng L, Zhang N, et al. Bimetallic metal-organic framework derived transition metal sulfide microspheres as high-performance lithium/sodium storage materials[J]. Chemical Engineering Journal,2022,446:137154. doi: 10.1016/j.cej.2022.137154
    [27]
    Fang G Z, Wu Z X, Zhou J, et al. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode[J]. Advanced Energy Materials,2018,8(19):1703155. doi: 10.1002/aenm.201703155
    [28]
    Chen J W, Li S H, Kumar V, et al. Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode[J]. Advanced Energy Materials,2017,7(19):1700180. doi: 10.1002/aenm.201700180
    [29]
    Gai L X, Song G L, Li Y Y, et al. Versatile bimetal sulfides nanoparticles-embedded N-doped hierarchical carbonaceous aerogels (N-NixSy/CoxSy@C) for excellent supercapacitors and microwave absorption[J]. Carbon,2021,179:111-124. doi: 10.1016/j.carbon.2021.04.029
    [30]
    Lee J S, Saroha R, Oh S H, et al. Rational design of perforated bimetallic (Ni, Mo) sulfides/N-doped graphitic carbon composite microspheres as anode materials for superior Na-ion batteries[J]. Small Methods,2021,5(9):2100195. doi: 10.1002/smtd.202100195
    [31]
    Wei X J, Zhang Y B, Zhang B K, et al. Yolk-shell-structured zinc-cobalt binary metal sulfide@N-doped carbon for enhanced lithium-ion storage[J]. Nano Energy,2019,64:103899. doi: 10.1016/j.nanoen.2019.103899
    [32]
    Li H, He Y Y, Dai Y X, et al. Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries[J]. Chemical Engineering Journal,2022,427:131784. doi: 10.1016/j.cej.2021.131784
    [33]
    Wang B, Chen Y F, Wang X Q, et al. RGO wrapped trimetallic sulfide nanowires as an efficient bifunctional catalyst for electrocatalytic oxygen evolution and photocatalytic organic degradation[J]. Journal of Materials Chemistry A,2020,8(27):13558-13571. doi: 10.1039/D0TA04383D
    [34]
    Huang Y, Xiong D B, Li X F, et al. Recent advances of bimetallic sulfide anodes for sodium ion batteries[J]. Frontiers in Chemistry,2020,8:17. doi: 10.3389/fchem.2020.00017
    [35]
    Goncalves J M, da Silva M I, Hasheminejad M, et al. Recent progress in core@shell sulfide electrode materials for advanced supercapacitor devices[J]. Batteries Supercaps,2021,4(9):1397-1427. doi: 10.1002/batt.202100017
    [36]
    Li S, Hua M H, Yang Y, et al. Phosphorous-doped bimetallic sulfides embedded in heteroatom-doped carbon nanoarrays for flexible all-solid-state supercapacitors[J]. Science China-Materials,2021,64(10):2439-2453. doi: 10.1007/s40843-020-1667-1
    [37]
    Li SJ, Ge P, Jiang F, et al. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property[J]. Energy Storage Materials,2019,16:267-280. doi: 10.1016/j.ensm.2018.06.006
    [38]
    Chen H, Mu J, Bian Y, et al. A bimetallic sulfide Co9S8/MoS2/C heterojunction in a three-dimensional carbon structure for increasing sodium ion storage[J]. New Carbon Materials,2023,38(3):510-521. doi: 10.1016/S1872-5805(23)60731-0
    [39]
    Wang L, Li J, Jin Y, et al. Study on the removal of chromium(iii) from leather waste by a two-step method[J]. Journal of Industrial and Engineering Chemistry,2019,79:172-180. doi: 10.1016/j.jiec.2019.06.030
    [40]
    Guo H, Ren Y Z, Sun X L, et al. Removal of Pb2+ from aqueous solutions by a high-efficiency resin[J]. Applied Surface Science,2013,283:660-667. doi: 10.1016/j.apsusc.2013.06.161
    [41]
    Zhou G T, Li Q G, Sun P, et al. Removal of impurities from scandium chloride solution using 732-type resin[J]. Journal of Rare Earths,2018,36(3):311-316. doi: 10.1016/j.jre.2017.09.009
    [42]
    Hu S Y, Zhang W C, Zheng M T, et al. Homogeneous triple-phase interfaces enabling one-pot route to metal compound/carbon composites[J]. Journal of Colloid and Interface Science,2021,599:271-279. doi: 10.1016/j.jcis.2021.04.054
    [43]
    Li H-M, Liu J-C, Zhu F-M, et al. Synthesis and physical properties of sulfonated syndiotactic polystyrene ionomers[J]. Polymer International,2001,50(4):421-428. doi: 10.1002/pi.646
    [44]
    Dizge N, Keskinler B, Barlas H. Sorption of Ni(ii) ions from aqueous solution by lewatit cation-exchange resin[J]. Journal of Hazardous Materials,2009,167(1-3):915-926. doi: 10.1016/j.jhazmat.2009.01.073
    [45]
    Hong T T, Okabe H, Hidaka Y, et al. Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting[J]. Carbohydrate Polymers,2017,157:335-343. doi: 10.1016/j.carbpol.2016.09.049
    [46]
    Li X J, Zhou Z H, Zhao Y Z, et al. Copper-doped sulfonic acid-functionalized MIL-101(Cr) metal-organic framework for efficient aerobic oxidation reactions[J]. Applied Organometallic Chemistry,2020,34:13.
    [47]
    Ilanchezhiyan P, Kumar G M, Siva C, et al. Evidencing enhanced oxygen and hydrogen evolution reactions using In-Zn-Co ternary transition metal oxide nanostructures: A novel bifunctional electrocatalyst[J]. International Journal of Hydrogen Energy,2019,44(41):23081-23090. doi: 10.1016/j.ijhydene.2019.07.069
    [48]
    Fang G Z, Wang Q C, Zhou J, et al. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction[J]. ACS Nano,2019,13(5):5635-5645. doi: 10.1021/acsnano.9b00816
    [49]
    Li Y, Qian J, Zhang M H, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries[J]. Advanced Materials,2020,32(47):2005802. doi: 10.1002/adma.202005802
  • -20230607Supporting Information.docx.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(242) PDF Downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return