Volume 38 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
REN Xian-pei, HU Qi-wei, LING Fang, WU Fei, LI Qiang, PANG Liu-qing. Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution. New Carbon Mater., 2023, 38(6): 1059-1069. doi: 10.1016/S1872-5805(23)60782-6
Citation: REN Xian-pei, HU Qi-wei, LING Fang, WU Fei, LI Qiang, PANG Liu-qing. Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution. New Carbon Mater., 2023, 38(6): 1059-1069. doi: 10.1016/S1872-5805(23)60782-6

Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution

doi: 10.1016/S1872-5805(23)60782-6
Funds:  This work was supported by the Sichuan Natural Science Foundation Project (22NSFSC0335) and the fund of the State Key Laboratory of Catalysis in DICP(N-22-14)
More Information
  • Author Bio:

    任先培,博士. renxianpei@163.com

  • Corresponding author: PANG Liu-qing, Engineer. E-mail: pangliuqing2021@fmac.ac.cn
  • Received Date: 2023-06-22
  • Accepted Date: 2023-09-28
  • Rev Recd Date: 2023-09-27
  • Available Online: 2023-10-20
  • Publish Date: 2023-11-23
  • Molybdenum selenide (MoSe2) has been regarded as an advanced electrocatalyst for the hydrogen evolution reaction (HER). However, its electrocatalytic performance is far inferior to platinum (Pt). Combining semiconductors with metals to construct Mott-Schottky heterojunctions has been considered as an effective method to enhance HER activity. In this work, we report a typical Mott-Schottky heterojunction composed of metal Co and semiconductor MoSe2 on carbon nanotubes (Co/MoSe2@CNT), prepared by a sol-gel process followed by thermal reduction. The characterization and theoretical calculations show that a Co/MoSe2 Mott-Schottky heterojunction can cause electron redistribution at the interface and form a built-in electric field, which not only optimizes the free energy of hydrogen atom adsorption, but also improves the charge transfer efficiency during hydrogen evolution. Thus, the Co/MoSe2@CNT has excellent catalytic activity with a low overpotential of 185 mV at 10 mA cm−2 and a small Tafel slope of 69 mV dec−1. This work provides a new strategy for constructing Co/MoSe2 Mott-Schottky heterojunctions and highlights the Mott-Schottky effect, which may inspire the future development of more attractive Mott-Schottky electrocatalysts for H2 production.
  • loading
  • [1]
    Yang M, Zhang C H, Li N W, et al. Design and synthesis of hollow nanostructures for electrochemical water splitting[J]. Advanced Science,2022,9:2105135. doi: 10.1002/advs.202105135
    [2]
    Wang K, Tang F, Yao X, et al. Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution[J]. New Carbon Materials,2022,37(6):1183-1192.
    [3]
    Wang T, Cao X, Jiao L. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production[J]. eScience,2021,1:69-74.
    [4]
    Pang L, Ma Q, Zhu C. Multifunctional amorphous Co phosphosulfide-coated Fe-Co carbonate hydroxide for highly efficient overall water splitting[J]. Journal of Electronic Materials,2023,52:1808-1818. doi: 10.1007/s11664-022-10194-9
    [5]
    Guo X, Wan X, Liu Q, et al. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction[J]. eScience,2022,2:304-310. doi: 10.1016/j.esci.2022.04.002
    [6]
    Lin L, Sun Z, Yuan M, et al. Significant enhancement of the performance of hydrogen evolution reaction through shapecontrolled synthesis of hierarchical dendrite-like platinum[J]. Journal of Materials Chemistry A,2018,6:8068-8077. doi: 10.1039/C8TA00993G
    [7]
    Yang Y, Kim J, Kim C, et al. Edge-selective decoration with ruthenium at graphitic nanoplatelets for efficient hydrogen production at universal pH[J]. Nano Energy,2020,76:105114. doi: 10.1016/j.nanoen.2020.105114
    [8]
    Li R, Liang J, Li T, et al. Recent advances in MoS2-based materials for electrocatalysis[J]. Chemical Communications,2022,58:2259-2278. doi: 10.1039/D1CC04004A
    [9]
    Li W, Chen J, Xiao Z, et al. MoS2/graphene/carbonized melamine foam composite catalysts for the hydrogen evolution reaction[J]. New Carbon Materials,2020,35(5):540-546. doi: 10.1016/S1872-5805(20)60507-8
    [10]
    Yao Y, Liu C, Luo L, et al. Microwave hydrothermal synthesis of hierarchical Ce-doped MoSe2@CNTs as an efficient non-precious catalyst for hydrogen evolution in both acidic and alkaline media[J]. Materials Research Bulletin,2022,146:111625. doi: 10.1016/j.materresbull.2021.111625
    [11]
    Xue Y, Xu Y, Yan Q, et al. Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe2 on biomass-derived carbon substrate for advanced hydrogen evolution reaction[J]. Journal of Colloid and Interface Science,2022,617:594-603. doi: 10.1016/j.jcis.2022.03.033
    [12]
    Singh V K, Nakate U T, Bhuyan P, et al. Mo/Co doped 1T-VS2 nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media[J]. Journal of Materials Chemistry A,2022,10:9067-9079. doi: 10.1039/D2TA00488G
    [13]
    Ren X P, Wei Q B, Wu F, et al. Binary V-Mo sulfides grown on CNTs with morphological and electronic modulation for enhanced hydrogen evolution[J]. CrystEngComm,2021,23:6668-6674. doi: 10.1039/D1CE00938A
    [14]
    Wang C, Wu X, Zhang X, et al. Iron-doped VSe2 nanosheets for enhanced hydrogen evolution reaction[J]. Applied Physics Letters,2020,116:223901. doi: 10.1063/5.0008092
    [15]
    Xia L, Pan K, Wu H, et al. Few-layered WS2 anchored on Co, N-doped carbon hollow polyhedron for oxygen evolution and hydrogen evolution[J]. ACS Applied Materials & Interfaces,2022,14:22030-22040.
    [16]
    Nam J H, Jang M J, Jang H Y, et al. Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction[J]. Journal of Energy Chemistry,2020,47:107-111. doi: 10.1016/j.jechem.2019.11.027
    [17]
    Gao B, Du X, Zhao Y, et al. Electron strain-driven phase transformation in transition-metal-co doped MoTe2 for electrocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2022,433:133768. doi: 10.1016/j.cej.2021.133768
    [18]
    Wang X, Wang J, Wei B, et al. Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction[J]. Journal of Materials Science & Technology,2021,78:170-175.
    [19]
    Deng S, Yang F, Zhang Q, et al. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction[J]. Advanced Materials,2018,30:1802223. doi: 10.1002/adma.201802223
    [20]
    Wazir M B, Daud M, Safeer S, et al. Review on 2D molybdenum diselenide (MoSe2) and its hybrids for green hydrogen (H2) generation applications[J]. ACS Omega,2022,7:16856-16865. doi: 10.1021/acsomega.2c00330
    [21]
    Qian J, Wang T, Xia B, et al. Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media[J]. Electrochimica Acta,2019,296:701-708. doi: 10.1016/j.electacta.2018.10.089
    [22]
    Li S, Zang W, Liu X, et al. Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance[J]. Chemical Engineering Journal,2019,359:1419-1426. doi: 10.1016/j.cej.2018.11.036
    [23]
    Ren X P, Ma Q, Ren P Y, et al. Synthesis of nitrogen-doped MoSe2 nanosheets with enhanced electrocatalytic activity for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2018,43:15275-15280. doi: 10.1016/j.ijhydene.2018.06.122
    [24]
    Li H, Zhu H, Li C, et al. S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2022,47:30371-30377. doi: 10.1016/j.ijhydene.2022.07.008
    [25]
    Luo H, Gao H, Zhang X, et al. Caterpillar-like 3D graphene nanoscrolls@CNTs hybrids decorated with Co-doped MoSe2 nanosheets for electrocatalytic hydrogen evolution[J]. Journal of Materials Science & Technology,2023,136:43-53.
    [26]
    Dogra N, Agrawal Pathak P S, et al. Hydrothermally synthesized MoSe2/ZnO composite with enhanced hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2023, 48: 26210-26220 DOI: org/10.1016/j.ijhydene.2023.03.352.
    [27]
    Wu M, Huang Y, Cheng X, et al. Arrays of ZnSe/MoSe2 nanotubes with electronic modulation as efficient electrocatalysts for hydrogen evolution reaction[J]. Advanced Materials Interfaces,2017,4:1700948. doi: 10.1002/admi.201700948
    [28]
    Sun Z, Lin L, Yuan M, et al. Mott-Schottky heterostructure induce the interfacial electron redistribution of MoS2 for boosting pH-universal hydrogen evolution with Pt-like activity[J]. Nano Energy,2022,101:107563. doi: 10.1016/j.nanoen.2022.107563
    [29]
    Xu D, Zhang S, Chen J, et al. Design of the synergistic rectifying interfaces in Mott-Schottky catalysts[J]. Chemical Reviews,2022,123:1-30.
    [30]
    Xue Z H, Su H, Yu Q Y, et al. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range[J]. Advanced Energy Materials,2017,7:1602355. doi: 10.1002/aenm.201602355
    [31]
    Chen J, Zheng J, He W, et al. Self-standing hollow porous Co/a-WOx nanowire with maximum Mott-Schottky effect for boosting alkaline hydrogen evolution reaction[J]. Nano Research, 2023, 16: 4603–4611
    [32]
    Li T, Yin J, Sun D, et al. Manipulation of Mott-Schottky Ni/CeO2 heterojunctions into N-doped carbon nanofibers for high-efficiency electrochemical water splitting[J]. Small,2022,18:2106592. doi: 10.1002/smll.202106592
    [33]
    Z. Hong, Z. Xu, Z. Wu, et al. Construction of core-shell Co-NC@W2N Schottky heterojunctions for high-efficiency hydrogen evolution reaction[J]. Applied Surface Science,2023,608:155159. doi: 10.1016/j.apsusc.2022.155159
    [34]
    Shao Z, Wu L, Yang Y, et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials,2021,36:219-226. doi: 10.1016/S1872-5805(21)60015-X
    [35]
    Setayeshgar S, Karimipour M, Molaei M, et al. Synthesis of scalable 1T/2H MoSe2 nanosheets with a new source of Se in basic media and study of their HER activity[J]. International Journal of Hydrogen Energy,2020,45:6090-6101. doi: 10.1016/j.ijhydene.2019.12.102
    [36]
    Xiao W, Bukhvalov D, Zou Z, et al. Unveiling the origin of the high catalytic activity of ultrathin 1T/2H MoSe2 nanosheets for the hydrogen evolution reaction: A combined experimental and theoretical study[J]. ChemSusChem,2019,12:5015-5022. doi: 10.1002/cssc.201902149
    [37]
    Tonndorf P, Schmidt R, Böttger P, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2[J]. Optics Express,2013,21:4908-4916. doi: 10.1364/OE.21.004908
    [38]
    Jiang M, Zhang J, Wu M, et al. Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 117 nm for efficient hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2016,4:14949-14953. doi: 10.1039/C6TA07020E
    [39]
    Tan C, Zhao W, Chaturvedi A, et al. Preparation of single-layer MoS2xSe2(1-x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase[J]. Small,2016,12:1866-1874. doi: 10.1002/smll.201600014
    [40]
    Inta H R, Ghosh S, Mondal A, et al. Ni0.85Se/MoSe2 interfacial structure: An efficient electrocatalyst for alkaline hydrogen evolution reaction[J]. ACS Applied Energy Materials,2021,4:2828-2837. doi: 10.1021/acsaem.1c00125
    [41]
    Deng S, Zhong Y, Zeng Y, et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction[J]. Advanced Materials,2017,29:1700748. doi: 10.1002/adma.201700748
    [42]
    Sun M, Yun S, Dang J, et al. 1D/3D rambutan-like Mott-Schottky porous carbon polyhedrons for efficient tri-iodide reduction and hydrogen evolution reaction[J]. Chemical Engineering Journal,2023,458:141301. doi: 10.1016/j.cej.2023.141301
    [43]
    Wang C, Li Y, Gu C, et al. Active Co@CoO core/shell nanowire arrays as efficient electrocatalysts for hydrogen evolution reaction[J]. Chemical Engineering Journal,2022,429:132226. doi: 10.1016/j.cej.2021.132226
    [44]
    Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2011,133:7296-7299. doi: 10.1021/ja201269b
    [45]
    X. Wang, G. Zhan, Y. Wang, et al. Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott-Schottky electrocatalysts in neutral rechargeable Zn-Air batteries[J]. Journal of Energy Chemistry,2022,68:113-123.
    [46]
    Li W, Cheng G, Peng S, et al. Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides[J]. Chemical Engineering Journal,2022,430:132699. doi: 10.1016/j.cej.2021.132699
  • -20230605Supporting Information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(304) PDF Downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return