Volume 38 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
ZHOU Ming-xia, ZHOU Wen-hua, LONG Xiang, ZHU Shao-kuan, Xu Peng, OUYANG Quan-sheng, SHI Bin, SHAO Jiao-jing. A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling. New Carbon Mater., 2023, 38(6): 1070-1079. doi: 10.1016/S1872-5805(23)60783-8
Citation: ZHOU Ming-xia, ZHOU Wen-hua, LONG Xiang, ZHU Shao-kuan, Xu Peng, OUYANG Quan-sheng, SHI Bin, SHAO Jiao-jing. A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling. New Carbon Mater., 2023, 38(6): 1070-1079. doi: 10.1016/S1872-5805(23)60783-8

A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling

doi: 10.1016/S1872-5805(23)60783-8
Funds:  This work was supported by National Natural Science Foundation of China (51972070, 52372185 and 52062004), Guizhou Provincial High Level Innovative Talents Project (QKHPTRC-GCC[2022]013-1), Innovation Team for Advanced Electrochemical Energy Storage Devices and Key Materials of Guizhou Provincial Higher Education Institutions (QianJiaoJi[2023]054), Guizhou Provincial Science and Technology Projects (QKHJC[2020]1Z042, QKHZC[2021]YB317) and Cultivation Project of Guizhou University (GDPY[2019]01)
More Information
  • Author Bio:

    周明霞与周文华为共同第一作者

  • Corresponding author: SHAO Jiao-jing, Ph.D, Professor. E-mail:xjshao@gzu.edu.cn
  • Received Date: 2023-05-21
  • Rev Recd Date: 2023-09-23
  • Available Online: 2023-10-20
  • Publish Date: 2023-11-23
  • A commercial polypropylene (PP) separator was modified by a one-dimensional carbon nanotube (CNT) and two-dimensional montmorillonite (MMT) hybrid material (CNT-MMT). Because of the high electron conductivity of the CNTs, and the strong polysulfide (LiPS) adsorption ability and easy lithium ion transport through MMT, the interconnected porous CNT-MMT interlayer with excellent structural integrity strongly suppresses LiPS shuttling while maintaining high lithium-ion transport, producing a high utilization of the active sulfur. Lithium-sulfur batteries assembled with this interlayer have a high lithium-ion diffusion coefficient, a high discharge capacity and stable cycling performance. They had an initial specific capacity of 1373 mAh g−1 at 0.1 C, and a stable cycling performance with a low decay rate of 0.062% per cycle at 1 C after 500 cycles.
  • loading
  • [1]
    Armand M, Tarascon J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [2]
    Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [3]
    Xu K. A long journey of lithium: From the big bang to our smartphones[J]. Energy & Environmental Materials,2019,2(4):229-233.
    [4]
    Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [5]
    Song Y, Long X, Luo Z, et al. Solid carbon spheres with interconnected open pore channels enabling high-efficient polysulfide conversion for high-rate lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2022,14(28):32183-32195.
    [6]
    Li L B, Shan Y H. The use of graphene and its composites to suppress the shuttle effect in lithium-sulfur batteries[J]. New Carbon Materials,2021,36(2):336-349. doi: 10.1016/S1872-5805(21)60023-9
    [7]
    Liang X, Wen Z, Liu Y U, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. Journal of Power Sources,2011,196(22):9839-9843. doi: 10.1016/j.jpowsour.2011.08.027
    [8]
    Moon S, Jung Y H, Jung W K, et al. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries[J]. Advanced Materials,2013,25(45):6547-6553. doi: 10.1002/adma.201303166
    [9]
    Dong Z, Zhang J, Zhao X, et al. Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li-S batteries[J]. Rsc Advances,2013,3(47):24914-24917. doi: 10.1039/c3ra45683h
    [10]
    Bing D, Shen L, Xu G, et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium-sulfur battery[J]. Electrochimica Acta,2013,107(10):78-84.
    [11]
    Dong Q, Shen R, Li C, et al. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries[J]. Small,2018,14(52):e1804277. doi: 10.1002/smll.201804277
    [12]
    Du Z, Guo C, Wang L, et al. Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries[J]. ACS Appl Mater Interfaces,2017,9(50):43696-43703. doi: 10.1021/acsami.7b14195
    [13]
    Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials,2015,27(18):2891-2898. doi: 10.1002/adma.201405637
    [14]
    Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive s-related species at the cathode-separator interface[J]. Energy Environmental Science,2014,7(10):3381-3390. doi: 10.1039/C4EE01377H
    [15]
    Long X, Zhu S K, Song Y, et al. Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries[J]. New Carbon Materials,2022,37(3):527-543. doi: 10.1016/S1872-5805(22)60614-0
    [16]
    Yin F, Jin Q, Zhang X T, et al. Design of a 3D CNT/Ti3T2Tx aerogel-modified separator for Li–S batteries to eliminate both the shuttle effect and slow redox kinetics of polysulfides[J]. New Carbon Materials,2022,37(4):724-733. doi: 10.1016/S1872-5805(21)60085-9
    [17]
    Shao Z T, Wu L L, Yang Y, et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials,2021,36(1):219-226. doi: 10.1016/S1872-5805(21)60015-X
    [18]
    Sun Z, Guo Y, Li B, et al. ZnO/carbon nanotube/reduced graphene oxide composite film as an effective interlayer for lithium/sulfur batteries[J]. Solid State Sciences,2019,95:105924. doi: 10.1016/j.solidstatesciences.2019.06.013
    [19]
    Yuan H, Peng H J, Li B Q, et al. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9(1):1802768. doi: 10.1002/aenm.201802768
    [20]
    Kaisar N, Abbas S A, Ding J, et al. A lithium passivated MoO3 nanobelt decorated polypropylene separator for fast-charging long-life Li-S batteries[J]. Nanoscale,2019,11(6):2892-2900. doi: 10.1039/C8NR08262F
    [21]
    Wu X, Fan L, Qiu Y, et al. Ion-selective prussian-blue-modified celgard separator for high-performance lithium-sulfur battery[J]. ChemSusChem,2018,11(18):3345-3351. doi: 10.1002/cssc.201800871
    [22]
    Kehal M, Reinert L, Maurin D, et al. The trapping of B from water by exfoliated and functionalized vermiculite[J]. Clays and Clay Minerals,2008,56(4):453-460. doi: 10.1346/CCMN.2008.0560406
    [23]
    Gamba M, Kovář P, Pospíšil M, et al. Insight into thiabendazole interaction with montmorillonite and organically modified montmorillonites[J]. Applied Clay Science,2017,137:59-68. doi: 10.1016/j.clay.2016.12.001
    [24]
    Pei F, Lin L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries[J]. Joule,2018,2(2):323-336. doi: 10.1016/j.joule.2017.12.003
    [25]
    Liao Y, Yuan L, Liu X, et al. Low-cost fumed silicon dioxide uniform Li+ flux for lean-electrolyte and anode-free Li/S battery[J]. Energy Storage Materials,2022,48:366-374. doi: 10.1016/j.ensm.2022.03.035
    [26]
    Ghadami A, Taheri Qazvini N, Nikfarjam N. Ionic conductivity in gelatin-based hybrid solid electrolytes: The non-trivial role of nanoclay[J]. Journal of Materials Science & Technology,2014,30(11):1096-1102.
    [27]
    Long X, Luo Z H, Zhou W H, et al. Two-dimensional montmorillonite-based heterostructure for high-rate and long-life lithium-sulfur batteries[J]. Energy Storage Materials,2022,52:120-129. doi: 10.1016/j.ensm.2022.07.041
    [28]
    Li W Y, Luo Z H, Long X, et al. Cation vacancy-boosted lewis acid-base interactions in a polymer electrolyte for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces,2021,13(43):51107-51116. doi: 10.1021/acsami.1c17002
    [29]
    Peng X, Wang T, Liu B, et al. A solvent molecule reconstruction strategy enabling a high-voltage ether-based electrolyte[J]. Energy & Environmental Science,2022,15(12):5350-5361.
    [30]
    Zhang T, Wang W, Zhao Y, et al. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites[J]. Chemical Engineering Journal,2021,420:127574. doi: 10.1016/j.cej.2020.127574
    [31]
    Liu M L, Huang M, Tian L Y, et al. Two-dimensional nanochannel arrays based on flexible montmorillonite membranes[J]. ACS Applied Materials & Interfaces,2018,10(51):44915-44923.
    [32]
    Lan Y, Liu Y, Li J, et al. Natural clay-based materials for energy storage and conversion applications[J]. Advanced Science,2021,8(11):e2004036. doi: 10.1002/advs.202004036
    [33]
    SHAO Jiao-jing, ZHENG De-yi, Li Zheng-jie, et al. Top-down fabrication of two-dimensional nanomaterials: Controllable liquid phase exfoliation[J]. New Carbon Materials,2016,31(02):97-114.
    [34]
    Chen W, Lei T, Lv W, et al. Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery [J]. Advanced Materials. 2018, e1804084
    [35]
    Wang W, Yang Y, Luo H, et al. Design of advanced separators for high performance Li-S batteries using natural minerals with 1D to 3D microstructures[J]. Journal of Colloid and Interface Science,2022,614:593-602. doi: 10.1016/j.jcis.2022.01.148
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(136) PDF Downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return