Volume 38 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
QIU Zi-han, ZHAO Guan-yu, SUN Yang, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan. Carbon-based photothermal materials for the simultaneous generation of water vapor and electricity. New Carbon Mater., 2023, 38(6): 997-1017. doi: 10.1016/S1872-5805(23)60785-1
Citation: QIU Zi-han, ZHAO Guan-yu, SUN Yang, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan. Carbon-based photothermal materials for the simultaneous generation of water vapor and electricity. New Carbon Mater., 2023, 38(6): 997-1017. doi: 10.1016/S1872-5805(23)60785-1

Carbon-based photothermal materials for the simultaneous generation of water vapor and electricity

doi: 10.1016/S1872-5805(23)60785-1
More Information
  • Author Bio:

    邱子涵和赵冠宇为共同第一作者

  • Corresponding author: WANG Xu-zhen, PhD, Professor. E-mail: xzwang@dlut.edu.cn
  • Received Date: 2023-09-03
  • Rev Recd Date: 2023-10-24
  • Available Online: 2023-11-15
  • Publish Date: 2023-11-23
  • Solar-driven interfacial vapor generation (SIVG) is increasingly used for fresh water production, having the advantages of low energy consumption, eco-friendliness, and high efficiency. Carbon-based photothermal materials (CPTMs) can introduce temperature and salinity gradients in the SIVG process because of their outstanding photothermal conversion properties, which have given SIVG great potential for both steam and power generation. Various kinds of CPTMs for clean water and electricity generation are discussed in this review. The basic principles and key performance indices of SIVG are first described and the photothermal and SIVG performance of various CPTMs including graphene oxides, carbon nanotubes, carbon dots and carbonized biomass are then summarized. Finally, current research concerning water/electricity cogeneration and ways to deal with the problems encountered are presented, to provide some guidelines for the use of multifunctional CPTMs for simultaneous steam and electricity generation.
  • loading
  • [1]
    Gao Y F, Wang Y, Zhou D, et al. Permselective graphene-based membranes and their applications in seawater desalination[J]. New Carbon Materials,2022,37(4):625-640. doi: 10.1016/S1872-5805(22)60618-8
    [2]
    Tarus B K, Jande Y A C, Njau K N. Electrospun carbon nanofibers for use in the capacitive desalination of water[J]. New Carbon Materials,2022,37(6):1066-1084. doi: 10.1016/S1872-5805(22)60645-0
    [3]
    Hu Z, Wang J, Ma X, et al. A critical review on semitransparent organic solar cells[J]. Nano Energy, 2020, 78.
    [4]
    Mavlonov A, Razykov T, Raziq F, et al. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells[J]. Solar Energy,2020,201:227-246. doi: 10.1016/j.solener.2020.03.009
    [5]
    Gao M M, Peh C K, Meng F L, et al. Photothermal membrane distillation toward solar water production[J]. Small Methods, 2021, 5(5).
    [6]
    Okampo E J, Nwulu N. Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2021, 140.
    [7]
    Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3(12):1031-1041. doi: 10.1038/s41560-018-0260-7
    [8]
    Anis S F, Hashaikeh R, Hilal N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review[J]. Desalination,2019,452:159-195. doi: 10.1016/j.desal.2018.11.006
    [9]
    Miller S, Shemer H, Semiat R. Energy and environmental issues in desalination[J]. Desalination,2015,366:2-8. doi: 10.1016/j.desal.2014.11.034
    [10]
    Panagopoulos A, Haralambous K J. Environmental impacts of desalination and brine treatment-challenges and mitigation measures[J]. Mar Pollut Bull,2020,161(Pt B):111773.
    [11]
    Guo M X, Wu J B, Li F H, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials,2020,35(4):436-443. doi: 10.1016/S1872-5805(20)60501-7
    [12]
    Zhu L, Gao M, Peh C K N, et al. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications[J]. Nano Energy,2019,57:507-518. doi: 10.1016/j.nanoen.2018.12.046
    [13]
    Yu S, Gu Y, Chao X, et al. Recent advances in interfacial solar vapor generation: clean water production and beyond[J]. Journal of Materials Chemistry A,2023,11(12):5978-6015. doi: 10.1039/D2TA10083E
    [14]
    Gao C, Zhou B, Li J, et al. Reversed vapor generation with Janus fabric evaporator and comprehensive thermal management for efficient interfacial solar distillation[J]. Chemical Engineering Journal,2023,463:142002. doi: 10.1016/j.cej.2023.142002
    [15]
    Huang Q C, Liang X C, Yan C Y, et al. Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges[J]. Applied Energy, 2021, 283.
    [16]
    Meng F T, Ju B Z, Zhang S F, et al. Nano/microstructured materials for solar-driven interfacial evaporators towards water purification[J]. Journal of Materials Chemistry A,2021,9(24):13746-13769. doi: 10.1039/D1TA02202D
    [17]
    Liu T Y, Li Y. Plasmonic solar desalination[J]. Nature Photonics,2016,10(6):361-362. doi: 10.1038/nphoton.2016.97
    [18]
    Jia C C, Li X X, Xin N, et al. Interface-engineered plasmonics in metal/semiconductor heterostructures[J]. Advanced Energy Materials, 2016, 6(17).
    [19]
    Zhu M W, Li Y J, Chen F J, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials,2018,8(4):1701028. doi: 10.1002/aenm.201701028
    [20]
    Wang J, Li Y, Deng L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29(3):1603730. doi: 10.1002/adma.201603730
    [21]
    Zhang L, Mu L, Zhou Q, et al. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination[J]. Water Research,2020,170:115367. doi: 10.1016/j.watres.2019.115367
    [22]
    Li K R, Chang T H, Li Z P, et al. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management[J]. Advanced Energy Materials,2019,9(34):1901687. doi: 10.1002/aenm.201901687
    [23]
    Chen G, Sun J, Peng Q, et al. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation[J]. Advanced Materials,2020,32(29):e1908537. doi: 10.1002/adma.201908537
    [24]
    Ma Q, Yin P, Zhao M, et al. MOF-based hierarchical structures for solar-thermal clean water production[J]. Advanced Materials,2019,31(17):e1808249. doi: 10.1002/adma.201808249
    [25]
    Wang T Y, Huang H B, Li H L, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. doi: 10.1016/S1872-5805(21)60066-5
    [26]
    He W, Zhou L, Wang M, et al. Structure development of carbon-based solar-driven water evaporation systems[J]. Science Bulletin,2021,66(14):1472-1483. doi: 10.1016/j.scib.2021.02.014
    [27]
    Li Y, Shi Y, Wang H, et al. Recent advances in carbon‐based materials for solar-driven interfacial photothermal conversion water evaporation: Assemblies, structures, applications, and prospective[J]. Carbon Energy, 2023: e331.
    [28]
    Fang S, Chu W, Tan J, et al. The mechanism for solar irradiation enhanced evaporation and electricity generation[J]. Nano Energy,2022,101:107605. doi: 10.1016/j.nanoen.2022.107605
    [29]
    Dotan H, Kfir O, Sharlin E, et al. Resonant light trapping in ultrathin films for water splitting[J]. Nature Materials,2013,12(2):158-164. doi: 10.1038/nmat3477
    [30]
    Zhu L L, Gao M M, Peh C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons,2018,5(3):323-343. doi: 10.1039/C7MH01064H
    [31]
    Xu Z R, Li Z D, Jiang Y H, et al. Recent advances in solar-driven evaporation systems[J]. Journal of Materials Chemistry A,2020,8(48):25571-25600. doi: 10.1039/D0TA08869B
    [32]
    Liu X, Mishra D D, Wang X, et al. Towards highly efficient solar-driven interfacial evaporation for desalination[J]. Journal of Materials Chemistry A,2020,8(35):17907-17937. doi: 10.1039/C9TA12612K
    [33]
    Shang W, Deng T. Solar steam generation: Steam by thermal concentration[J]. Nature Energy,2016,1(9):16133. doi: 10.1038/nenergy.2016.133
    [34]
    Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets[J]. Nano Energy,2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005
    [35]
    Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization[J]. Nature Communication,2014,5:4449. doi: 10.1038/ncomms5449
    [36]
    Ni G, Miljkovic N, Ghasemi H, et al. Volumetric solar heating of nanofluids for direct vapor generation[J]. Nano Energy,2015,17:290-301. doi: 10.1016/j.nanoen.2015.08.021
    [37]
    Liu Z, Song H, Ji D, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J]. Global Challenges,2017,1(2):1600003. doi: 10.1002/gch2.201600003
    [38]
    Xiao X D, Miao L, Xu G, et al. A facile process to prepare copper oxide thin films as solar selective absorbers[J]. Applied Surface Science,2011,257(24):10729-10736. doi: 10.1016/j.apsusc.2011.07.088
    [39]
    Zhou J H, Gu Y F, Liu P F, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials,2019,29(50):1903255.
    [40]
    Ulset E T, Kosinski P, Zabednova Y, et al. Photothermal boiling in aqueous nanofluids[J]. Nano Energy,2018,50:339-346. doi: 10.1016/j.nanoen.2018.05.050
    [41]
    Wu L, Dong Z, Cai Z, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communication,2020,11(1):521. doi: 10.1038/s41467-020-14366-1
    [42]
    Li X, Li J, Lu J, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule,2018,2(7):1331-1338. doi: 10.1016/j.joule.2018.04.004
    [43]
    Gao M M, Zhu L L, Peh C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science,2019,12(3):841-864.
    [44]
    Dao V D, Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices[J]. Global Challenges,2018,2(2):1700094. doi: 10.1002/gch2.201700094
    [45]
    Hu X, Xu W, Zhou L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials,2017,29(5):1604031. doi: 10.1002/adma.201604031
    [46]
    Wang Y C, Wang C Z, Song X J, et al. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J]. Journal of Materials Chemistry A,2018,6(3):963-971. doi: 10.1039/C7TA08972D
    [47]
    Shi L, Wang Y, Zhang L, et al. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A,2017,5(31):16212-16219. doi: 10.1039/C6TA09810J
    [48]
    Dong S Y, Zhao Y L, Yang J Y, et al. Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation[J]. Applied Catalysis B: Environmental,2021,291:120127. doi: 10.1016/j.apcatb.2021.120127
    [49]
    Tao F J, Zhang Y L, Wang B B, et al. Graphite powder/semipermeable collodion membrane composite for water evaporation[J]. Solar Energy Materials and Solar Cells,2018,180:34-45. doi: 10.1016/j.solmat.2018.02.014
    [50]
    Dao V D, Vu N H, Dang H L T, et al. Recent advances and challenges for water evaporation-induced electricity toward applications[J]. Nano Energy,2021,85:105979. doi: 10.1016/j.nanoen.2021.105979
    [51]
    Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight[J]. Environmental Science: Nano,2018,5(5):1078-1089. doi: 10.1039/C8EN00156A
    [52]
    Fillet R, Nicolas V, Fierro V, et al. A review of natural materials for solar evaporation[J]. Solar Energy Materials and Solar Cells,2021,219:110814. doi: 10.1016/j.solmat.2020.110814
    [53]
    Lin K T, Lin H, Yang T, et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion[J]. Nature Communication,2020,11(1):1389. doi: 10.1038/s41467-020-15116-z
    [54]
    Zhang P, Li J, Lv L, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano,2017,11(5):5087-5093. doi: 10.1021/acsnano.7b01965
    [55]
    Li X, Xu W, Tang M, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(49):13953-13958.
    [56]
    Xi S, Wang L, Xie H, et al. Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage[J]. ACS Nano,2022,16(3):3843-3851. doi: 10.1021/acsnano.1c08581
    [57]
    Qi G Q, Yang J, Bao R Y, et al. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage[J]. Nano Research,2017,10(3):802-813. doi: 10.1007/s12274-016-1333-1
    [58]
    Zhang P P, Liao Q H, Zhang T, et al. High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight[J]. Nano Energy,2018,46:415-422. doi: 10.1016/j.nanoen.2018.02.018
    [59]
    Meng S, Zhao X, Tang C Y, et al. A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation[J]. Journal of Materials Chemistry A,2020,8(5):2701-2711. doi: 10.1039/C9TA12802F
    [60]
    Wang K, Wang D Y, Wang M Z, et al. Functional photothermal sponges for efficient solar steam generation and accelerated cleaning of viscous crude-oil spill[J]. Solar Energy Materials and Solar Cells,2020,204:110203. doi: 10.1016/j.solmat.2019.110203
    [61]
    Ren H, Tang M, Guan B, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials,2017,29(38):1702590. doi: 10.1002/adma.201702590
    [62]
    Zhou X Y, Zhao F, Guo Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science,2018,11(8):1985-1992.
    [63]
    Guo Y, Zhao F, Zhou X, et al. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation[J]. Nano Letters,2019,19(4):2530-2536. doi: 10.1021/acs.nanolett.9b00252
    [64]
    Zhang P P, Liao Q H, Yao H Z, et al. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun[J]. Journal of Materials Chemistry A,2018,6(31):15303-15309. doi: 10.1039/C8TA05412F
    [65]
    Chen C, Li Y, Song J, et al. Highly flexible and efficient solar steam generation device[J]. Advanced Materials,2017,29(30):1701756. doi: 10.1002/adma.201701756
    [66]
    Dong X, Cao L, Si Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials,2020,32(34):e1908269. doi: 10.1002/adma.201908269
    [67]
    Li T, Fang Q, Wang J, et al. Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays[J]. Journal of Materials Chemistry A,2021,9(1):390-399. doi: 10.1039/D0TA09368H
    [68]
    Ma X, Fang W Z, Ying W, et al. A robust asymmetric porous SWCNT/Gelatin thin membrane with salt-resistant for efficient solar vapor generation[J]. Applied Materials Today,2020,18:100459. doi: 10.1016/j.apmt.2019.100459
    [69]
    Hu G, Cao Y, Huang M, et al. Salt-resistant carbon nanotubes/polyvinyl alcohol hybrid gels with tunable water transport for high-efficiency and long-term solar steam generation[J]. Energy Technology,2019,8(1):1900721.
    [70]
    Cai T T, Liu B, Pang E N, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials,2020,35(6):646-666. doi: 10.1016/S1872-5805(20)60520-0
    [71]
    Nhat Hang N T, Van Canh N, Hoa N H, et al. Co-assembled hybrid of carbon nanodots and molecular fluorophores for efficient solar-driven water evaporation[J]. Carbon,2022,199:462-468. doi: 10.1016/j.carbon.2022.07.063
    [72]
    Li M, Yang M, Liu B, et al. Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion[J]. Chemical Engineering Journal,2022,431:134245. doi: 10.1016/j.cej.2021.134245
    [73]
    Zhou H, Xue C, Chang Q, et al. Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification[J]. Chemical Engineering Journal,2021,421:129822. doi: 10.1016/j.cej.2021.129822
    [74]
    Wang Y, Chang Q, Xue C, et al. Chemical treatment of biomass wastes as carbon dot carriers for solar-driven water purification[J]. Journal of Colloid and Interface Science,2022,621:33-40. doi: 10.1016/j.jcis.2022.04.061
    [75]
    Xu X, Chang Q, Xue C, et al. A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation[J]. Journal of Materials Chemistry A,2022,10(21):11712-11720. doi: 10.1039/D2TA02302D
    [76]
    Hou Q, Xue C, Li N, et al. Self-assembly carbon dots for powerful solar water evaporation[J]. Carbon,2019,149:556-563. doi: 10.1016/j.carbon.2019.04.083
    [77]
    Irshad M S, Wang X, Abbas A, et al. Salt-resistant carbon dots modified solar steam system enhanced by chemical advection[J]. Carbon,2021,176:313-326. doi: 10.1016/j.carbon.2021.01.140
    [78]
    Wang X, Sun Y, Zhao G Y, et al. Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation[J]. New Carbon Materials,2023,38(1):162-172. doi: 10.1016/S1872-5805(22)60621-8
    [79]
    Chen L, He S, Huang W, et al. 3D-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination[J]. Composites Part B: Engineering,2023,263:110830. doi: 10.1016/j.compositesb.2023.110830
    [80]
    Lin X L, Wang P, Hong R T, et al. Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation[J]. Advanced Functional Materials,2022,32(51):2209262. doi: 10.1002/adfm.202209262
    [81]
    Jia C, Li Y J, Yang Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule,2017,1(3):588-599. doi: 10.1016/j.joule.2017.09.011
    [82]
    Li T, Liu H, Zhao X P, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced Functional Materials,2018,28(16):1707134. doi: 10.1002/adfm.201707134
    [83]
    Hou Q, Zhou H Y, Zhang W, et al. Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood[J]. Science of the Total Environment, 2021, 759.
    [84]
    Chen X, He S M, Falinski M M, et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators[J]. Energy & Environmental Science,2021,14(10):5347-5357.
    [85]
    Xu N, Hu X, Xu W, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials,2017,29(28):1606762. doi: 10.1002/adma.201606762
    [86]
    Fang Q, Li T, Chen Z, et al. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media[J]. ACS Appllied Material & Interfaces,2019,11(11):10672-10679. doi: 10.1021/acsami.9b00291
    [87]
    Feng Q, Bu X T, Wan Z M, et al. An efficient torrefaction Bamboo-based evaporator in interfacial solar steam generation[J]. Solar Energy,2021,230:1095-1105. doi: 10.1016/j.solener.2021.11.027
    [88]
    Sun Y, Zhao Z B, Zhao G Y, et al. High performance carbonized corncob-based 3D solar vapor steam generator enhanced by environmental energy[J]. Carbon,2021,179:337-347. doi: 10.1016/j.carbon.2021.04.037
    [89]
    Weinstein L A, McEnaney K, Strobach E, et al. A hybrid electric and thermal solar receiver[J]. Joule,2018,2(5):962-975. doi: 10.1016/j.joule.2018.02.009
    [90]
    Cheng P, Ziegler M, Ripka V, et al. Black silver: three-dimensional Ag hybrid plasmonic nanostructures with strong photon coupling for scalable photothermoelectric power generation[J]. ACS Appllied Material & Interfaces,2022,14(14):16894-16900. doi: 10.1021/acsami.2c01181
    [91]
    Liu G, Yu F, Irshad M S, et al. Biomass-inspired solar evaporator for simultaneous steam and power generation enhanced by thermal-electric effect[J]. Energy Technology, 2022, 10(12).
    [92]
    Gui J, Li C, Cao Y, et al. Hybrid solar evaporation system for water and electricity co-generation: Comprehensive utilization of solar and water energy[J]. Nano Energy,2023,107:108155. doi: 10.1016/j.nanoen.2022.108155
    [93]
    Gu X, Fan C, Sun Y. Multilevel design strategies of high-performance interfacial solar vapor generation: A state of the art review[J]. Chemical Engineering Journal,2023,460:141716. doi: 10.1016/j.cej.2023.141716
    [94]
    Liu G H, Chen T, Xu J L, et al. Solar evaporation for simultaneous steam and power generation[J]. Journal of Materials Chemistry A,2020,8(2):513-531. doi: 10.1039/C9TA12211G
    [95]
    Jaziri N, Boughamoura A, Muller J, et al. A comprehensive review of thermoelectric generators: technologies and common applications[J]. Energy Reports,2020,6:264-287.
    [96]
    Beretta D, Neophytou N, Hodges J M, et al. Thermoelectrics: From history, a window to the future[J]. Materials Science and Engineering:R:Reports,2019,138:210-255.
    [97]
    Kraemer D, Poudel B, Feng H P, et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration[J]. Nature Materials,2011,10(7):532-538. doi: 10.1038/nmat3013
    [98]
    Lee J H, Kim J, Kim T Y, et al. All-in-one energy harvesting and storage devices[J]. Journal of Materials Chemistry A,2016,4(21):7983-7999. doi: 10.1039/C6TA01229A
    [99]
    Mu X J, Zhou J H, Wang P F, et al. A robust starch-polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity-freshwater cogeneration[J]. Energy & Environmental Science,2022,15(8):3388-3399.
    [100]
    Sun Y, Zhao Z, Zhao G, et al. Solar-driven simultaneous desalination and power generation enabled by graphene oxide nanoribbon papers[J]. Journal of Materials Chemistry A,2022,10(16):9184-9194. doi: 10.1039/D2TA00375A
    [101]
    Dupont M F, MacFarlane D R, Pringle J M. Thermo-electrochemical cells for waste heat harvesting-progress and perspectives[J]. Chemical Communications,2017,53(47):6288-6302. doi: 10.1039/C7CC02160G
    [102]
    Hu R, Cola B, Haram N, et al. Harvesting waste thermal energy using carbon-nanotube-based thermo-electrochemical cell[J]. Nano Letters,2010,10:838-46. doi: 10.1021/nl903267n
    [103]
    Lee S W, Yang Y, Lee H W, et al. An electrochemical system for efficiently harvesting low-grade heat energy[J]. Nature Communications, 2014, 5.
    [104]
    Shen Q C, Ning Z Y, Fu B W, et al. An open thermo-electrochemical cell enabled by interfacial evaporation[J]. Journal of Materials Chemistry A,2019,7(11):6514-6521. doi: 10.1039/C8TA10190F
    [105]
    Zhao J Y, Wu X, Yu H M, et al. Regenerable aerogel-based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems[J]. EcoMat,2023,5:e12302. doi: 10.1002/eom2.12302
    [106]
    Yip N Y, Brogioli D, Hamelers H V M, et al. Salinity gradients for sustainable energy: primer, progress, and prospects[J]. Environmental Science & Technology,2016,50(22):12072-12094.
    [107]
    La Mantia F, Pasta M, Deshazer H D, et al. Batteries for efficient energy extraction from a water salinity difference[J]. Nano Letters,2011,11(4):1810-1813. doi: 10.1021/nl200500s
    [108]
    Jia Z J, Wang B G, Song S Q, et al. Blue energy: Current technologies for sustainable power generation from water salinity gradient[J]. Renewable and Sustainable Energy Reviews,2014,31:91-100. doi: 10.1016/j.rser.2013.11.049
    [109]
    Yang P H, Liu K, Chen Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science,2017,10(9):1923-1927.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article Views(330) PDF Downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return